Deep Convolutional Neural Networks for Road Extraction

A. Campos, Fair Aboshehwa, Lusi Li, Wenlu Zhang
{"title":"Deep Convolutional Neural Networks for Road Extraction","authors":"A. Campos, Fair Aboshehwa, Lusi Li, Wenlu Zhang","doi":"10.1109/IGESSC50231.2020.9285011","DOIUrl":null,"url":null,"abstract":"In recent years, the advances in high-resolution satellite imagery have led to the popularity of automatic road extraction. However, most existing methods suffer from high computational cost and low efficiency. In this paper, we propose two novel encoder-decoder deep networks to tackle the automatic road extraction problem. The proposed methods integrate Atrous Spatial Pyramid Pooling (ASPP) and Dense Convolutional Network (DenseNet) on Unet. We implement our proposed models on DeepGlobe dataset and Massachusetts road extraction dataset. The experimental results show that our model is computationally efficient and able to effectively extract multi-scale global features and to preserve spatial information from deeper networks.","PeriodicalId":437709,"journal":{"name":"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGESSC50231.2020.9285011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In recent years, the advances in high-resolution satellite imagery have led to the popularity of automatic road extraction. However, most existing methods suffer from high computational cost and low efficiency. In this paper, we propose two novel encoder-decoder deep networks to tackle the automatic road extraction problem. The proposed methods integrate Atrous Spatial Pyramid Pooling (ASPP) and Dense Convolutional Network (DenseNet) on Unet. We implement our proposed models on DeepGlobe dataset and Massachusetts road extraction dataset. The experimental results show that our model is computationally efficient and able to effectively extract multi-scale global features and to preserve spatial information from deeper networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积神经网络的道路提取
近年来,随着高分辨率卫星图像技术的进步,道路自动提取技术得到了广泛应用。然而,现有的方法大多存在计算成本高、效率低的问题。在本文中,我们提出了两种新的编码器-解码器深度网络来解决自动道路提取问题。该方法在Unet上集成了空间金字塔池(ASPP)和密集卷积网络(DenseNet)。我们在DeepGlobe数据集和马萨诸塞州道路提取数据集上实现了我们提出的模型。实验结果表明,该模型具有较高的计算效率,能够有效地提取多尺度的全局特征,并从更深层的网络中保留空间信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IGESSC 2020 Committees IGESSC 2020 Breaker Page Modeling and Development of a HIL Testbed for DER Dynamics Integration Demonstration A Review on Smart LED Lighting Systems Deep Convolutional Neural Networks for Road Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1