Role of Regenerative Braking in Velocity Trajectory Optimization of Electrified Powertrains over varying Road Grades

N. Prakash, Youngki Kim, Denise M. Rizzo, Matthew J. Brusstar, Jason B. Siegel
{"title":"Role of Regenerative Braking in Velocity Trajectory Optimization of Electrified Powertrains over varying Road Grades","authors":"N. Prakash, Youngki Kim, Denise M. Rizzo, Matthew J. Brusstar, Jason B. Siegel","doi":"10.1109/CCTA.2018.8511486","DOIUrl":null,"url":null,"abstract":"Eco-driving via velocity trajectory optimization and regenerative braking can both reduce the energy demand of an electric vehicle (EV). However, eco-driving can save more energy than can be recovered via regenerative braking due to the total roundtrip efficiency of the motor/generator. The optimal velocity trajectory would always avoid braking if the constraints allow. This paper investigates energy optimal velocity profiles for various electric ground vehicles over varying road grades, where the autonomous vehicles can adjust their velocity trajectory. The optimal velocity trajectories, numerically obtained from Dynamic Programming, significantly reduce the total energy demand by the motor compared to a constant cruising operation for the same travel distance and time. The optimized velocity trajectories, thus increase vehicle range without a change in battery size or trip time.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Eco-driving via velocity trajectory optimization and regenerative braking can both reduce the energy demand of an electric vehicle (EV). However, eco-driving can save more energy than can be recovered via regenerative braking due to the total roundtrip efficiency of the motor/generator. The optimal velocity trajectory would always avoid braking if the constraints allow. This paper investigates energy optimal velocity profiles for various electric ground vehicles over varying road grades, where the autonomous vehicles can adjust their velocity trajectory. The optimal velocity trajectories, numerically obtained from Dynamic Programming, significantly reduce the total energy demand by the motor compared to a constant cruising operation for the same travel distance and time. The optimized velocity trajectories, thus increase vehicle range without a change in battery size or trip time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
再生制动在不同路面等级电气化动力系统速度轨迹优化中的作用
通过速度轨迹优化和再生制动来实现生态驾驶,都可以降低电动汽车的能量需求。然而,由于电机/发电机的总往返效率,生态驾驶可以节省比再生制动所能回收的更多的能量。在约束条件允许的情况下,最优速度轨迹总是避免制动。本文研究了各种电动地面车辆在不同道路等级上的能量最优速度分布,其中自动驾驶车辆可以调整其速度轨迹。从动态规划中获得的最佳速度轨迹,与相同行驶距离和时间的恒定巡航操作相比,显着降低了电机的总能量需求。优化的速度轨迹,从而增加车辆的范围,而不改变电池大小或行程时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust $\mathcal{H}_{\infty}$ Pointing Error Control of Free Space Optical Communication Systems Incremental Reference Generation for Nonsingular Control on $SE (3)$ A Distributed Parameter Approach to Model the Transcriptional Response of Escherichia Coli in a Scale-Down Reactor Passivity-Short-based Stability Analysis on Electricity Market Trading System Considering Negative Price Robust and Secure UAV Navigation Using GNSS, Phased-Array Radio System and Inertial Sensor Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1