HiveMind

Liam Patterson, David Pigorovsky, Brian Dempsey, N. Lazarev, Aditya Shah, Clara Steinhoff, Ariana Bruno, Justin Hu, Christina Delimitrou
{"title":"HiveMind","authors":"Liam Patterson, David Pigorovsky, Brian Dempsey, N. Lazarev, Aditya Shah, Clara Steinhoff, Ariana Bruno, Justin Hu, Christina Delimitrou","doi":"10.1145/3470496.3527407","DOIUrl":null,"url":null,"abstract":"Swarms of autonomous devices are increasing in ubiquity and size, making the need for rethinking their hardware-software system stack critical. We present HiveMind, the first swarm coordination platform that enables programmable execution of complex task workflows between cloud and edge resources in a performant and scalable manner. HiveMind is a software-hardware platform that includes a domain-specific language to simplify programmability of cloud-edge applications, a program synthesis tool to automatically explore task placement strategies, a centralized controller that leverages serverless computing to elastically scale cloud resources, and a reconfigurable hardware acceleration fabric for network and remote memory accesses. We design and build the full end-to-end HiveMind system on two real edge swarms comprised of drones and robotic cars. We quantify the opportunities and challenges serverless introduces to edge applications, as well as the trade-offs between centralized and distributed coordination. We show that HiveMind achieves significantly better performance predictability and battery efficiency compared to existing centralized and decentralized platforms, while also incurring lower network traffic. Using both real systems and a validated simulator we show that HiveMind can scale to thousands of edge devices without sacrificing performance or efficiency, demonstrating that centralized platforms can be both scalable and performant.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Swarms of autonomous devices are increasing in ubiquity and size, making the need for rethinking their hardware-software system stack critical. We present HiveMind, the first swarm coordination platform that enables programmable execution of complex task workflows between cloud and edge resources in a performant and scalable manner. HiveMind is a software-hardware platform that includes a domain-specific language to simplify programmability of cloud-edge applications, a program synthesis tool to automatically explore task placement strategies, a centralized controller that leverages serverless computing to elastically scale cloud resources, and a reconfigurable hardware acceleration fabric for network and remote memory accesses. We design and build the full end-to-end HiveMind system on two real edge swarms comprised of drones and robotic cars. We quantify the opportunities and challenges serverless introduces to edge applications, as well as the trade-offs between centralized and distributed coordination. We show that HiveMind achieves significantly better performance predictability and battery efficiency compared to existing centralized and decentralized platforms, while also incurring lower network traffic. Using both real systems and a validated simulator we show that HiveMind can scale to thousands of edge devices without sacrificing performance or efficiency, demonstrating that centralized platforms can be both scalable and performant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BioHD: an efficient genome sequence search platform using HyperDimensional memorization MeNDA: a near-memory multi-way merge solution for sparse transposition and dataflows Graphite: optimizing graph neural networks on CPUs through cooperative software-hardware techniques INSPIRE: in-storage private information retrieval via protocol and architecture co-design CraterLake: a hardware accelerator for efficient unbounded computation on encrypted data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1