CraterLake: a hardware accelerator for efficient unbounded computation on encrypted data

Nikola Samardzic, Axel Feldmann, A. Krastev, Nathan Manohar, N. Genise, S. Devadas, Karim M. El Defrawy, Chris Peikert, Daniel Sánchez
{"title":"CraterLake: a hardware accelerator for efficient unbounded computation on encrypted data","authors":"Nikola Samardzic, Axel Feldmann, A. Krastev, Nathan Manohar, N. Genise, S. Devadas, Karim M. El Defrawy, Chris Peikert, Daniel Sánchez","doi":"10.1145/3470496.3527393","DOIUrl":null,"url":null,"abstract":"Fully Homomorphic Encryption (FHE) enables offloading computation to untrusted servers with cryptographic privacy. Despite its attractive security, FHE is not yet widely adopted due to its prohibitive overheads, about 10,000X over unencrypted computation. Recent FHE accelerators have made strides to bridge this performance gap. Unfortunately, prior accelerators only work well for simple programs, but become inefficient for complex programs, which bring additional costs and challenges. We present CraterLake, the first FHE accelerator that enables FHE programs of unbounded size (i.e., unbounded multiplicative depth). Such computations require very large ciphertexts (tens of MBs each) and different algorithms that prior work does not support well. To tackle this challenge, CraterLake introduces a new hardware architecture that efficiently scales to very large cipher-texts, novel functional units to accelerate key kernels, and new algorithms and compiler techniques to reduce data movement. We evaluate CraterLake on deep FHE programs, including deep neural networks like ResNet and LSTMs, where prior work takes minutes to hours per inference on a CPU. CraterLake outperforms a CPU by gmean 4,600X and the best prior FHE accelerator by 11.2X under similar area and power budgets. These speeds enable realtime performance on unbounded FHE programs for the first time.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

Fully Homomorphic Encryption (FHE) enables offloading computation to untrusted servers with cryptographic privacy. Despite its attractive security, FHE is not yet widely adopted due to its prohibitive overheads, about 10,000X over unencrypted computation. Recent FHE accelerators have made strides to bridge this performance gap. Unfortunately, prior accelerators only work well for simple programs, but become inefficient for complex programs, which bring additional costs and challenges. We present CraterLake, the first FHE accelerator that enables FHE programs of unbounded size (i.e., unbounded multiplicative depth). Such computations require very large ciphertexts (tens of MBs each) and different algorithms that prior work does not support well. To tackle this challenge, CraterLake introduces a new hardware architecture that efficiently scales to very large cipher-texts, novel functional units to accelerate key kernels, and new algorithms and compiler techniques to reduce data movement. We evaluate CraterLake on deep FHE programs, including deep neural networks like ResNet and LSTMs, where prior work takes minutes to hours per inference on a CPU. CraterLake outperforms a CPU by gmean 4,600X and the best prior FHE accelerator by 11.2X under similar area and power budgets. These speeds enable realtime performance on unbounded FHE programs for the first time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个硬件加速器,用于对加密数据进行有效的无界计算
完全同态加密(FHE)允许将计算卸载到具有加密隐私的不受信任的服务器。尽管FHE具有吸引力的安全性,但由于其令人望而却步的开销,大约是未加密计算的10,000倍,因此尚未被广泛采用。最近的FHE加速器在弥合这一性能差距方面取得了长足的进步。不幸的是,以前的加速器只适用于简单的程序,但对于复杂的程序却效率低下,这带来了额外的成本和挑战。我们提出陨石坑湖,第一个FHE加速器,使FHE程序无界的大小(即,无界的乘法深度)。这样的计算需要非常大的密文(每个密文几十mb)和不同的算法,而以前的工作并不支持这些算法。为了应对这一挑战,CraterLake引入了一种新的硬件架构,可以有效地扩展到非常大的加密文本,新的功能单元可以加速关键内核,新的算法和编译器技术可以减少数据移动。我们在深度FHE程序上评估了CraterLake,包括ResNet和lstm等深度神经网络,在这些程序中,CPU上的每次推理需要几分钟到几小时。在类似的面积和功耗预算下,CraterLake的性能比CPU平均高出4,600倍,比之前最好的FHE加速器高出11.2倍。这些速度首次实现了无限FHE程序的实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BioHD: an efficient genome sequence search platform using HyperDimensional memorization MeNDA: a near-memory multi-way merge solution for sparse transposition and dataflows Graphite: optimizing graph neural networks on CPUs through cooperative software-hardware techniques INSPIRE: in-storage private information retrieval via protocol and architecture co-design CraterLake: a hardware accelerator for efficient unbounded computation on encrypted data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1