On the access by content capabilities of the LRAAM

A. Sperduti, A. Starita
{"title":"On the access by content capabilities of the LRAAM","authors":"A. Sperduti, A. Starita","doi":"10.1109/ICNN.1994.374344","DOIUrl":null,"url":null,"abstract":"The labeling RAAM (LRAAM) is a neural network able to encode data structures in fixed size patterns, thus allowing the application of neural networks to structured domains. Moreover, the structures stored into an LRAAM can be accessed both by pointer and by content. In this paper we briefly discuss basic and generalized associative access procedures for the LRAAM. Basic procedures are obtained by transforming the LRAAM network into a BAM. Different constrained versions of the BAM are used depending on the key(s) used to retrieve information. Generalized procedures are implemented by generalized Hopfield networks (GHN) which are built both by composing the subset of weights compounding the LRAAM and according to the query used to retrieve information. Some examples for generalized procedures are given.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The labeling RAAM (LRAAM) is a neural network able to encode data structures in fixed size patterns, thus allowing the application of neural networks to structured domains. Moreover, the structures stored into an LRAAM can be accessed both by pointer and by content. In this paper we briefly discuss basic and generalized associative access procedures for the LRAAM. Basic procedures are obtained by transforming the LRAAM network into a BAM. Different constrained versions of the BAM are used depending on the key(s) used to retrieve information. Generalized procedures are implemented by generalized Hopfield networks (GHN) which are built both by composing the subset of weights compounding the LRAAM and according to the query used to retrieve information. Some examples for generalized procedures are given.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论LRAAM的内容访问能力
标记RAAM (LRAAM)是一种能够以固定大小模式对数据结构进行编码的神经网络,从而允许将神经网络应用于结构化领域。此外,存储在LRAAM中的结构既可以通过指针访问,也可以通过内容访问。本文简要讨论了LRAAM的基本和广义关联访问过程。通过将LRAAM网络转换为BAM,得到了基本过程。根据用于检索信息的键,使用不同的约束版本的BAM。广义Hopfield网络(Generalized Hopfield network, GHN)是一种基于LRAAM的权重子集组合和基于检索信息的查询构建的网络。给出了一些广义过程的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1