Improvement of speed control performance using PID type neurocontroller in an electric vehicle system

S. Matsumura, S. Omatu, H. Higasa
{"title":"Improvement of speed control performance using PID type neurocontroller in an electric vehicle system","authors":"S. Matsumura, S. Omatu, H. Higasa","doi":"10.1109/ICNN.1994.374640","DOIUrl":null,"url":null,"abstract":"In order to develop an efficient driving system for electric vehicle (EV), a testing system using motors has been built to simulate the driving performance of EVs. In the testing system, the PID controller is used to control rotating speed of motor when the EV drives. In this paper, in order to improve the performance of speed control, a neural network is applied to tuning parameters of PI controller. It is shown,through experiments that a neural network can reduce output error effectively while the PI controller parameters are being tuned online.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In order to develop an efficient driving system for electric vehicle (EV), a testing system using motors has been built to simulate the driving performance of EVs. In the testing system, the PID controller is used to control rotating speed of motor when the EV drives. In this paper, in order to improve the performance of speed control, a neural network is applied to tuning parameters of PI controller. It is shown,through experiments that a neural network can reduce output error effectively while the PI controller parameters are being tuned online.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用PID型神经控制器改进电动汽车系统的速度控制性能
为了开发高效的电动汽车驱动系统,建立了电动汽车电机驱动测试系统,模拟了电动汽车的驱动性能。在测试系统中,采用PID控制器控制电动汽车驱动时电机的转速。为了提高速度控制的性能,本文采用神经网络对PI控制器的参数进行整定。实验表明,在在线调整PI控制器参数的同时,神经网络可以有效地减小输出误差
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1