Detección de comandos de voz con modelos compactos de aprendizaje profundo

Edoardo Bucheli-Susarrey, Miguel González-Mendoza, Oscar Herrera-Alcántara
{"title":"Detección de comandos de voz con modelos compactos de aprendizaje profundo","authors":"Edoardo Bucheli-Susarrey, Miguel González-Mendoza, Oscar Herrera-Alcántara","doi":"10.13053/rcs-148-7-26","DOIUrl":null,"url":null,"abstract":"The Keyword Detection problem consists in localizing a small vocabulary of words embedded in some stream of audio. Keyword Detection constantly runs in the background of many mobile devices and thus it becomes a requirement to create models with a small memory footprint and low computational power. Using the Simple Speech Commands Detection data set, we present a comparative study using two types of layers. Hand-Engineered layers are created from audio feature extraction models based on the Fourier Transform and Mel Filterbanks. Learned layers belong to the Deep Learning literature and include dense layers, recurrent layers and convolutional layers. Using the Deep Learning Pipeline, we organize these layers to solve the problem.","PeriodicalId":220522,"journal":{"name":"Res. Comput. Sci.","volume":"424 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Res. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/rcs-148-7-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Keyword Detection problem consists in localizing a small vocabulary of words embedded in some stream of audio. Keyword Detection constantly runs in the background of many mobile devices and thus it becomes a requirement to create models with a small memory footprint and low computational power. Using the Simple Speech Commands Detection data set, we present a comparative study using two types of layers. Hand-Engineered layers are created from audio feature extraction models based on the Fourier Transform and Mel Filterbanks. Learned layers belong to the Deep Learning literature and include dense layers, recurrent layers and convolutional layers. Using the Deep Learning Pipeline, we organize these layers to solve the problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用紧凑的深度学习模型检测语音命令
关键字检测问题包括定位嵌入在音频流中的小词汇表。关键字检测经常在许多移动设备的后台运行,因此需要创建内存占用小、计算能力低的模型。使用简单语音命令检测数据集,我们使用两种类型的层进行了比较研究。手工设计的层是基于傅里叶变换和梅尔滤波器组的音频特征提取模型创建的。学习层属于深度学习文献,包括密集层、循环层和卷积层。使用深度学习管道,我们组织这些层来解决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of an Intelligent Model based on Big Data and Decision Making using Fuzzy Logic Type-2 for the Car Assembly Industry in an Industrial Estate in Northern Mexico Random Forest and Deep Learning Performance on the Malaria DREAM Sub Challenge One A Model for Identifying Steps in Undergraduate Thesis Methodology Captura de atributos discriminativos Reconocimiento de gestos de la mano aplicado a una interfaz para ambientes de aprendizaje
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1