A probabilistic pareto local search based on historical success counting for multiobjective optimization

Xinye Cai, Xin Cheng, Zhun Fan
{"title":"A probabilistic pareto local search based on historical success counting for multiobjective optimization","authors":"Xinye Cai, Xin Cheng, Zhun Fan","doi":"10.1145/2598394.2610011","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multiobjective probabilistic Pareto local search to address combinatorial optimization problems (COPs). The probability is determined by the success counts of local search offspring entering an external domination archive and this probabilistic information is used to further guide the selection of promising solutions for Pareto local search. In addition, simulated annealing is integrated in this framework as the local refinement process. This multiobjective probabilistic Pareto local search algorithm (MOPPLS), is tested on two famous COPs and compared with some well-known multiobjective evolutionary algorithms. Experimental results suggest that MOPPLS outperforms other compared algorithms.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2610011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a multiobjective probabilistic Pareto local search to address combinatorial optimization problems (COPs). The probability is determined by the success counts of local search offspring entering an external domination archive and this probabilistic information is used to further guide the selection of promising solutions for Pareto local search. In addition, simulated annealing is integrated in this framework as the local refinement process. This multiobjective probabilistic Pareto local search algorithm (MOPPLS), is tested on two famous COPs and compared with some well-known multiobjective evolutionary algorithms. Experimental results suggest that MOPPLS outperforms other compared algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于历史成功计数的概率pareto局部搜索多目标优化
在本文中,我们提出了一种多目标概率Pareto局部搜索来解决组合优化问题。该概率由局部搜索子代进入外部支配存档的成功次数决定,并利用该概率信息进一步指导Pareto局部搜索有希望的解的选择。此外,在该框架中集成了模拟退火作为局部细化过程。本文提出的多目标概率Pareto局部搜索算法(MOPPLS)在两个著名的cop上进行了测试,并与一些著名的多目标进化算法进行了比较。实验结果表明,MOPPLS算法优于其他比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1