An Estimation Procedure for Contingency Table Models Based on Nested Geometry

Yoshihiro Hirose, F. Komaki
{"title":"An Estimation Procedure for Contingency Table Models Based on Nested Geometry","authors":"Yoshihiro Hirose, F. Komaki","doi":"10.14490/JJSS.45.57","DOIUrl":null,"url":null,"abstract":"We propose a method for estimating the parameters of contingency table models, which is motivated by a geometrical idea. Our method—bisector regression for contingency tables (BRCT)—is based on a nested structure of contingency table models. Our method estimates parameters corresponding to the interactions of lower orders after estimating or eliminating those of higher orders. BRCTgenerates a sequence of parameter estimates, each element of which represents a model and a parameter estimate. The length of the sequence is equal to the number of parameters, which is much smaller than the total number of models. We describe the BRCTalgorithm and show an example. We provide explanations for two cases: (a) two factors and (b) K factors.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.45.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a method for estimating the parameters of contingency table models, which is motivated by a geometrical idea. Our method—bisector regression for contingency tables (BRCT)—is based on a nested structure of contingency table models. Our method estimates parameters corresponding to the interactions of lower orders after estimating or eliminating those of higher orders. BRCTgenerates a sequence of parameter estimates, each element of which represents a model and a parameter estimate. The length of the sequence is equal to the number of parameters, which is much smaller than the total number of models. We describe the BRCTalgorithm and show an example. We provide explanations for two cases: (a) two factors and (b) K factors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于嵌套几何的列联表模型估计方法
提出了一种基于几何思想的列联表模型参数估计方法。我们的方法-列联表的平分线回归(BRCT) -基于列联表模型的嵌套结构。我们的方法在估计或消除高阶相互作用后估计低阶相互作用对应的参数。brct生成一系列参数估计,其中的每个元素表示一个模型和一个参数估计。序列的长度等于参数的个数,这比模型的总数要小得多。我们描述了brc算法并给出了一个示例。我们提供了两种情况的解释:(a)两个因素和(b) K个因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric tests for the effect of treatment on conditional variance Purely Sequential and Two-Stage Bounded-Length Confidence Interval Estimation Problems in Fisher’s “Nile” Example Poisson Approximations for Sum of Bernoulli Random Variables and its Application to Ewens Sampling Formula A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model Approximation of the Meta-Analytic-Predictive Prior Distribution in the One-Way Random Effects Model with Unknown Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1