A data cleaning method for water quality based on improved hierarchical clustering algorithm

Qingxuan Meng, Jianzhuo Yan
{"title":"A data cleaning method for water quality based on improved hierarchical clustering algorithm","authors":"Qingxuan Meng, Jianzhuo Yan","doi":"10.1504/ijspm.2019.10025772","DOIUrl":null,"url":null,"abstract":"Identifying and rectifying incomplete water quality data is of vital importance. A data cleaning method based on improved balanced iterative reducing and clustering using hierarchies (BIRCH) clustering algorithm is proposed. The clustering feature tree of water quality data is constructed and the cluster vector of the clustering feature tree is obtained by the agglomerative method. The optimal cluster number is determined according to the Bayesian Information Criterion and the nearest clustering ratio. The Pauta criterion is used to detect the global outlier and artificial neural network (ANN) is used to fill in outliers and missing values. Finally, the improved data cleaning method is applied to water quality monitoring data of Beijing wastewater treatment plant. The experimental results show that the data cleaning method can not only detect abnormal values and missing values accurately, but also normalise and complete missing data.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijspm.2019.10025772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Identifying and rectifying incomplete water quality data is of vital importance. A data cleaning method based on improved balanced iterative reducing and clustering using hierarchies (BIRCH) clustering algorithm is proposed. The clustering feature tree of water quality data is constructed and the cluster vector of the clustering feature tree is obtained by the agglomerative method. The optimal cluster number is determined according to the Bayesian Information Criterion and the nearest clustering ratio. The Pauta criterion is used to detect the global outlier and artificial neural network (ANN) is used to fill in outliers and missing values. Finally, the improved data cleaning method is applied to water quality monitoring data of Beijing wastewater treatment plant. The experimental results show that the data cleaning method can not only detect abnormal values and missing values accurately, but also normalise and complete missing data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于改进层次聚类算法的水质数据清洗方法
识别和校正不完整的水质数据是至关重要的。提出了一种基于层次结构的改进平衡迭代约简聚类(BIRCH)聚类算法的数据清理方法。构造了水质数据的聚类特征树,并通过聚类方法得到聚类特征树的聚类向量。根据贝叶斯信息准则和最接近的聚类比确定最优聚类数。采用Pauta准则检测全局异常值,并用人工神经网络(ANN)填充异常值和缺失值。最后,将改进的数据清洗方法应用于北京污水处理厂的水质监测数据。实验结果表明,该方法不仅可以准确地检测出异常值和缺失值,而且可以对缺失数据进行归一化和补全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic jam prediction using hazardous material transportation management simulation Evaluating the impact of shared situational awareness on combat effectiveness in symmetric engagements Realistic scenario modelling for building power supply and distribution system based on non-intrusive load monitoring Acoustic performance and modal analysis for the muffler of a four-stroke three-cylinder inline spark ignition engine Utilising scenario-based simulation modelling to optimise aircraft inspection scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1