Mechanism Design for Personalized Recommender Systems

Qingpeng Cai, Aris Filos-Ratsikas, Chang Liu, Pingzhong Tang
{"title":"Mechanism Design for Personalized Recommender Systems","authors":"Qingpeng Cai, Aris Filos-Ratsikas, Chang Liu, Pingzhong Tang","doi":"10.1145/2959100.2959135","DOIUrl":null,"url":null,"abstract":"Strategic behaviour from sellers on e-commerce websites, such as faking transactions and manipulating the recommendation scores through artificial reviews, have been among the most notorious obstacles that prevent websites from maximizing the efficiency of their recommendations. Previous approaches have focused almost exclusively on machine learning-related techniques to detect and penalize such behaviour. In this paper, we tackle the problem from a different perspective, using the approach of the field of mechanism design. We put forward a game model tailored for the setting at hand and aim to construct truthful mechanisms, i.e. mechanisms that do not provide incentives for dishonest reputation-augmenting actions, that guarantee good recommendations in the worst-case. For the setting with two agents, we propose a truthful mechanism that is optimal in terms of social efficiency. For the general case of m agents, we prove both lower and upper bound results on the effciency of truthful mechanisms and propose truthful mechanisms that yield significantly better results, when compared to an existing mechanism from a leading e-commerce site on real data.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Strategic behaviour from sellers on e-commerce websites, such as faking transactions and manipulating the recommendation scores through artificial reviews, have been among the most notorious obstacles that prevent websites from maximizing the efficiency of their recommendations. Previous approaches have focused almost exclusively on machine learning-related techniques to detect and penalize such behaviour. In this paper, we tackle the problem from a different perspective, using the approach of the field of mechanism design. We put forward a game model tailored for the setting at hand and aim to construct truthful mechanisms, i.e. mechanisms that do not provide incentives for dishonest reputation-augmenting actions, that guarantee good recommendations in the worst-case. For the setting with two agents, we propose a truthful mechanism that is optimal in terms of social efficiency. For the general case of m agents, we prove both lower and upper bound results on the effciency of truthful mechanisms and propose truthful mechanisms that yield significantly better results, when compared to an existing mechanism from a leading e-commerce site on real data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
个性化推荐系统的机制设计
电子商务网站上卖家的战略行为,如伪造交易和通过人为评论操纵推荐分数,一直是阻碍网站最大限度地提高推荐效率的最臭名昭著的障碍之一。以前的方法几乎完全集中在与机器学习相关的技术上,以检测和惩罚此类行为。在本文中,我们使用机构设计领域的方法,从不同的角度来解决这个问题。我们提出了一个针对当前环境的博弈模型,旨在构建真实的机制,即不为不诚实的声誉增强行为提供激励的机制,从而在最坏情况下保证良好的推荐。对于两个主体的设置,我们提出了一个在社会效率方面最优的真实机制。对于m个代理的一般情况,我们证明了真实机制效率的下界和上界结果,并提出了与领先的电子商务网站的现有机制相比产生更好结果的真实机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1