Reinforcement Learning based Data-driven Optimal Control Strategy for Systems with Disturbance

Zhong Fan, Shihua Li, Rongjie Liu
{"title":"Reinforcement Learning based Data-driven Optimal Control Strategy for Systems with Disturbance","authors":"Zhong Fan, Shihua Li, Rongjie Liu","doi":"10.1109/DDCLS58216.2023.10167230","DOIUrl":null,"url":null,"abstract":"This paper proposes a partially model-free optimal control strategy for a class of continuous-time systems in a data-driven way. Although a series of optimal control have achieving superior performance, the following challenges still exist: (i) The controller designed based on the nominal system is difficult to cope with sudden disturbances. (ii) Feedback control is highly dependent on system dynamics and generally requires full state information. A novel composite control method combining output feedback reinforcement learning and input-output disturbance observer for these two challenges is concluded in this paper. Firstly, an output feedback policy iteration (PI) algorithm is given to acquire the feedback gain iteratively. Simultaneously, the observer continuously provides estimates of the disturbance. System dynamic information and states information are not needed to be known in advance in our approach, thus offering a higher degree of robustness and practical implementation prospects. Finally, an example is given to show the effectiveness of the proposed controller.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10167230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a partially model-free optimal control strategy for a class of continuous-time systems in a data-driven way. Although a series of optimal control have achieving superior performance, the following challenges still exist: (i) The controller designed based on the nominal system is difficult to cope with sudden disturbances. (ii) Feedback control is highly dependent on system dynamics and generally requires full state information. A novel composite control method combining output feedback reinforcement learning and input-output disturbance observer for these two challenges is concluded in this paper. Firstly, an output feedback policy iteration (PI) algorithm is given to acquire the feedback gain iteratively. Simultaneously, the observer continuously provides estimates of the disturbance. System dynamic information and states information are not needed to be known in advance in our approach, thus offering a higher degree of robustness and practical implementation prospects. Finally, an example is given to show the effectiveness of the proposed controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的扰动系统最优控制策略
针对一类连续时间系统,提出了一种数据驱动的部分无模型最优控制策略。虽然一系列最优控制取得了优异的性能,但仍然存在以下挑战:(1)基于标称系统设计的控制器难以应对突发干扰。(ii)反馈控制高度依赖于系统动力学,通常需要完整的状态信息。针对这两种挑战,本文提出了一种结合输出反馈强化学习和输入输出干扰观测器的复合控制方法。首先,给出了一种输出反馈策略迭代算法,迭代获取反馈增益。同时,观测器不断地提供对扰动的估计。在我们的方法中,不需要预先知道系统动态信息和状态信息,从而提供了更高程度的鲁棒性和实际实现前景。最后,通过一个算例验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on target grab of leg-arm cooperative robot based on vision A Review of Sound Source Localization Research in Three-Dimensional Space Improved Mixed Discrete Particle Swarms based Multi-task Assignment for UAVs Dynamical linearization based PLS modeling and model-free adaptive control Hidden Markov model based finite-time H∞ guaranteed cost control for singular discrete-time Markov jump delay systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1