Spectral coding of speech based on generalized sorted codebook vector quantization

H.R.S. Mohammadi
{"title":"Spectral coding of speech based on generalized sorted codebook vector quantization","authors":"H.R.S. Mohammadi","doi":"10.1109/ICOSP.1998.770275","DOIUrl":null,"url":null,"abstract":"Sorted codebook vector quantization (SCVQ) is shown to be a very efficient vector quantization method. Generalization of SCVQ is suggested and its application to the spectral coding of speech using the quantization of line spectral frequencies (LSF), which are the most popular parameters to represent the linear prediction model for spectrum quantization in speech coders, is described. Computer simulations are conducted to evaluate the performance of the new method. We demonstrate that the new method achieves superior quality and has low implementation costs.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sorted codebook vector quantization (SCVQ) is shown to be a very efficient vector quantization method. Generalization of SCVQ is suggested and its application to the spectral coding of speech using the quantization of line spectral frequencies (LSF), which are the most popular parameters to represent the linear prediction model for spectrum quantization in speech coders, is described. Computer simulations are conducted to evaluate the performance of the new method. We demonstrate that the new method achieves superior quality and has low implementation costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义排序码本矢量量化的语音频谱编码
排序码本矢量量化(SCVQ)是一种非常有效的矢量量化方法。提出了SCVQ的泛化方法,并描述了其在语音编码中使用线谱频率量化(LSF)进行语音频谱编码的应用,LSF是表示语音编码中频谱量化的线性预测模型的最常用参数。通过计算机仿真对新方法的性能进行了评价。结果表明,该方法具有较好的质量和较低的实施成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new estimation formula for minimum filter length of optimum FIR digital filters A fuzzy associative memory pattern classifier Randomized method for planar motion estimation and matching points A robust speech feature-perceptive scalogram based on wavelet analysis A new class of feature-orientated motion estimation for motion pictures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1