Williams expansion-based approximation of the stress field in an Al 2024 body with a crack from optical measurements

S. Seitl, L. Malíková, J. Sobek, P. Frantik, P. Lopez‐Crespo
{"title":"Williams expansion-based approximation of the stress field in an Al 2024 body with a crack from optical measurements","authors":"S. Seitl, L. Malíková, J. Sobek, P. Frantik, P. Lopez‐Crespo","doi":"10.3221/IGF-ESIS.41.43","DOIUrl":null,"url":null,"abstract":"A study on the approximation of the stress field in the vicinity of crack tip in a compact tension specimen made from Al 2024-T351 is presented. Crack tip stress tensor components are expressed using the linear elastic fracture mechanics (LEFM) theory in this work, more precisely via its multi-parameter formulation, i.e. by Williams power series (WPS). Determination of coefficients of terms of this series is performed using a least squares-based regression technique known as over deterministic method (ODM) for which displacements data obtained experimentally via optical measurements are taken as inputs. The stress fields reconstructed based on the displacement data obtained experimentally by means of optical measurements are verified by means of the stress field approximations derived for the normalized CT specimen via hybrid elements.","PeriodicalId":300868,"journal":{"name":"Fracture and Structural Integrity","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fracture and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/IGF-ESIS.41.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A study on the approximation of the stress field in the vicinity of crack tip in a compact tension specimen made from Al 2024-T351 is presented. Crack tip stress tensor components are expressed using the linear elastic fracture mechanics (LEFM) theory in this work, more precisely via its multi-parameter formulation, i.e. by Williams power series (WPS). Determination of coefficients of terms of this series is performed using a least squares-based regression technique known as over deterministic method (ODM) for which displacements data obtained experimentally via optical measurements are taken as inputs. The stress fields reconstructed based on the displacement data obtained experimentally by means of optical measurements are verified by means of the stress field approximations derived for the normalized CT specimen via hybrid elements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学测量中带有裂纹的Al 2024物体应力场的Williams扩展近似
本文对Al 2024-T351致密拉伸试样裂纹尖端附近应力场的近似进行了研究。本文使用线弹性断裂力学(LEFM)理论来表示裂纹尖端应力张量分量,更精确地通过其多参数公式,即Williams幂级数(WPS)来表示。该系列项的系数的确定使用基于最小二乘的回归技术,即超确定性方法(ODM),其中通过光学测量实验获得的位移数据作为输入。利用光学测量实验得到的位移数据重构的应力场,通过混合元对归一化CT试样的应力场近似进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractography and Tensile studies on the effect of different carbon fillers reinforced hybrid nanocomposites Crack identification in plates-type structures using natural frequencies coupled with successful history-based adaptive differential evolution algorithm Fracture Load Estimations for U-Notched and V-Notched 3D Printed PLA and Graphene-Reinforced PLA plates using the ASED Criterion Notch Sensitivity Study in U-notched Polymers Built by Additive Manufacturing (AM) Behavior of a Multi-Story Steel Structure with Eccentric X-Brace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1