Behavior of a Multi-Story Steel Structure with Eccentric X-Brace

Abdulkhalik Abdulridha
{"title":"Behavior of a Multi-Story Steel Structure with Eccentric X-Brace","authors":"Abdulkhalik Abdulridha","doi":"10.3221/igf-esis.66.17","DOIUrl":null,"url":null,"abstract":"Eccentrically Braced Frames (EBFs) outperform moment-resisting frames in seismically active regions because of their strength, stiffness, energy dissipation, and ductility. Conventional bracing systems, such as X, Y, V, or K types, are utilized to enhance structural integrity. This study employs computational modelling to analyze multi-story steel buildings featuring an eccentric X-brace system. In this investigation, 120 multi-story steel frame buildings were selected. These multi-story structures comprise six-, nine-, and twelve-story geometries. ETABS built a full-scale FE model of multi-story structures. The study's parametric variables are the X-brace eccentricity, steel X-brace section size, and X-braced placement. Steel X-braces may have an eccentricity of 500, 1000, or 1500 millimeters. The ETABS model was validated when its findings matched experimental data. According to the data, the eccentric X-brace increases top-story displacement more for 6-story multi-story structures than for 9- and 12-story ones. Eccentric X-braces reduced lateral stiffness, allowing more significant floor movement. Eccentric and diagonal braces offer less lateral rigidity than concentrically braced frames due to their flexibility. Eccentricity reduces stiffness, even if the X-braced component has a larger cross-section. EBFs may migrate horizontally. Since the EBF absorbs more energy, changing the X-brace section size and eccentricity affects its ductility.","PeriodicalId":300868,"journal":{"name":"Fracture and Structural Integrity","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fracture and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.66.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Eccentrically Braced Frames (EBFs) outperform moment-resisting frames in seismically active regions because of their strength, stiffness, energy dissipation, and ductility. Conventional bracing systems, such as X, Y, V, or K types, are utilized to enhance structural integrity. This study employs computational modelling to analyze multi-story steel buildings featuring an eccentric X-brace system. In this investigation, 120 multi-story steel frame buildings were selected. These multi-story structures comprise six-, nine-, and twelve-story geometries. ETABS built a full-scale FE model of multi-story structures. The study's parametric variables are the X-brace eccentricity, steel X-brace section size, and X-braced placement. Steel X-braces may have an eccentricity of 500, 1000, or 1500 millimeters. The ETABS model was validated when its findings matched experimental data. According to the data, the eccentric X-brace increases top-story displacement more for 6-story multi-story structures than for 9- and 12-story ones. Eccentric X-braces reduced lateral stiffness, allowing more significant floor movement. Eccentric and diagonal braces offer less lateral rigidity than concentrically braced frames due to their flexibility. Eccentricity reduces stiffness, even if the X-braced component has a larger cross-section. EBFs may migrate horizontally. Since the EBF absorbs more energy, changing the X-brace section size and eccentricity affects its ductility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偏心x支撑多层钢结构的性能研究
偏心支撑框架(EBFs)在地震活跃地区优于抗弯矩框架,因为它们的强度,刚度,能量耗散和延性。传统的支撑系统,如X、Y、V或K型,用于增强结构的完整性。本研究采用计算模型对偏心x支撑系统的多层钢结构建筑进行分析。本次调查选取了120栋多层钢框架建筑。这些多层结构包括六层、九层和十二层的几何形状。ETABS建立了多层结构全尺寸有限元模型。研究的参数变量是x支撑偏心、钢x支撑截面尺寸和x支撑位置。钢的x型支撑可以有500、1000或1500毫米的偏心。ETABS模型的结果与实验数据吻合,验证了模型的有效性。根据数据,偏心x支撑对6层多层结构的顶层位移的增加大于9层和12层结构。偏心x型支撑降低了横向刚度,允许更显著的地板运动。偏心和对角支撑提供较少的横向刚性比同心支撑框架由于其灵活性。偏心降低刚度,即使x支撑构件具有较大的截面。ebf可以水平迁移。由于EBF吸收更多能量,改变x支撑截面尺寸和偏心距会影响其延性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractography and Tensile studies on the effect of different carbon fillers reinforced hybrid nanocomposites Crack identification in plates-type structures using natural frequencies coupled with successful history-based adaptive differential evolution algorithm Fracture Load Estimations for U-Notched and V-Notched 3D Printed PLA and Graphene-Reinforced PLA plates using the ASED Criterion Notch Sensitivity Study in U-notched Polymers Built by Additive Manufacturing (AM) Behavior of a Multi-Story Steel Structure with Eccentric X-Brace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1