The Effect of the Characteristics of the Dataset on the Selection Stability

Salem Alelyani, Huan Liu, Lei Wang
{"title":"The Effect of the Characteristics of the Dataset on the Selection Stability","authors":"Salem Alelyani, Huan Liu, Lei Wang","doi":"10.1109/ICTAI.2011.167","DOIUrl":null,"url":null,"abstract":"Feature selection is an effective technique to reduce the dimensionality of a data set and to select relevant features for the domain problem. Recently, stability of feature selection methods has gained increasing attention. In fact, it has become a crucial factor in determining the goodness of a feature selection algorithm besides the learning performance. In this work, we conduct an extensive experimental study using verity of data sets and different well-known feature selection algorithms in order to study the behavior of these algorithms in terms of the stability.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Feature selection is an effective technique to reduce the dimensionality of a data set and to select relevant features for the domain problem. Recently, stability of feature selection methods has gained increasing attention. In fact, it has become a crucial factor in determining the goodness of a feature selection algorithm besides the learning performance. In this work, we conduct an extensive experimental study using verity of data sets and different well-known feature selection algorithms in order to study the behavior of these algorithms in terms of the stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据集特征对选择稳定性的影响
特征选择是一种有效的降低数据集的维数并为领域问题选择相关特征的技术。近年来,特征选择方法的稳定性越来越受到人们的关注。事实上,除了学习性能之外,它已经成为决定特征选择算法好坏的关键因素。在这项工作中,我们使用数据集的真实性和不同的知名特征选择算法进行了广泛的实验研究,以研究这些算法在稳定性方面的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1