Hybrid Models Based on LSTM and CNN Architecture with Bayesian Optimization for ShortTerm Photovoltaic Power Forecasting

Yaobang Chen, Jie Shi, Xingong Cheng, Xiaoyi Ma
{"title":"Hybrid Models Based on LSTM and CNN Architecture with Bayesian Optimization for ShortTerm Photovoltaic Power Forecasting","authors":"Yaobang Chen, Jie Shi, Xingong Cheng, Xiaoyi Ma","doi":"10.1109/ICPSAsia52756.2021.9621525","DOIUrl":null,"url":null,"abstract":"The precision and reliability of photovoltaic (PV) power forecasting play a crucial role in commercial PV plants. However, the stochastic and intermittent nature of solar radiation makes prediction difficult. Inspired by this, 4 different deep learning-based hybrid models are proposed to predict short-term PV power generation using long short term memory (LSTM) neural network and convolutional neural network (CNN) based on Bayesian Optimization (BO) in this paper. In addition, this paper explores feature selection using two benchmark models on different feature sets, and finally selects 5 features for prediction. The performances of direct forecasting results for both 1-hour ahead and 24-hour ahead of the above various models are compared on one year of hourly data from a real PV plant in Shandong, China. It is shown that using Bi-directional LSTM (BiLSTM) and CNN-BiLSTM models are more suitable for 1-hour ahead prediction, LSTM-CNN and CNN-BiLSTM models are more suitable for 24-hour ahead prediction. The case study shows that the model with Bayesian optimized optimal weights can reduce the error rate by up to 32.80% compared to the benchmark model and demonstrates the good prediction performance of the proposed approach on commercial PV plants.","PeriodicalId":296085,"journal":{"name":"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPSAsia52756.2021.9621525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The precision and reliability of photovoltaic (PV) power forecasting play a crucial role in commercial PV plants. However, the stochastic and intermittent nature of solar radiation makes prediction difficult. Inspired by this, 4 different deep learning-based hybrid models are proposed to predict short-term PV power generation using long short term memory (LSTM) neural network and convolutional neural network (CNN) based on Bayesian Optimization (BO) in this paper. In addition, this paper explores feature selection using two benchmark models on different feature sets, and finally selects 5 features for prediction. The performances of direct forecasting results for both 1-hour ahead and 24-hour ahead of the above various models are compared on one year of hourly data from a real PV plant in Shandong, China. It is shown that using Bi-directional LSTM (BiLSTM) and CNN-BiLSTM models are more suitable for 1-hour ahead prediction, LSTM-CNN and CNN-BiLSTM models are more suitable for 24-hour ahead prediction. The case study shows that the model with Bayesian optimized optimal weights can reduce the error rate by up to 32.80% compared to the benchmark model and demonstrates the good prediction performance of the proposed approach on commercial PV plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM和CNN结构的混合模型及贝叶斯优化的光伏短期电力预测
光伏发电功率预测的准确性和可靠性在商业光伏电站中起着至关重要的作用。然而,太阳辐射的随机性和间歇性使预测变得困难。受此启发,本文提出了4种不同的基于深度学习的混合模型,利用长短期记忆(LSTM)神经网络和基于贝叶斯优化(BO)的卷积神经网络(CNN)来预测短期光伏发电。此外,本文在不同的特征集上使用两个基准模型探索特征选择,最终选择5个特征进行预测。以中国山东某光伏电站1年每小时实测数据为基础,比较了上述各种模型提前1小时和提前24小时直接预测结果的性能。结果表明,双向LSTM (BiLSTM)和CNN-BiLSTM模型更适合于1小时前的预测,LSTM- cnn和CNN-BiLSTM模型更适合于24小时前的预测。实例研究表明,与基准模型相比,采用贝叶斯优化最优权值的模型可将错误率降低32.80%,并证明了该方法对商业光伏电站的良好预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of No-load Medium Recovery Characteristics of CO2 Circuit Breaker The Energy Management Strategies of Residential Integrated Energy System Considering Integrated Demand Response Optimal Operation of Integrated Electricity-Gas Systems for Renewable Energy Accommodation Considering Flexible Resources Optimal Offering and Operating Strategy of CSP Plants under Different Support Mechanisms Power Loss Mitigation of Parallel-Connected Distributed Energy Resources in DC Microgrids Using a Dual-Ascent Hierarchical Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1