Application of unsupervised segmentation for SAR imageries based on multiscale stochastic models

Yi-xiao Xiong, Jinming Ding, Wei Wang
{"title":"Application of unsupervised segmentation for SAR imageries based on multiscale stochastic models","authors":"Yi-xiao Xiong, Jinming Ding, Wei Wang","doi":"10.1109/RADAR.2016.8059505","DOIUrl":null,"url":null,"abstract":"A new unsupervised segmentation algorithm of SAR(Synthetic aperture radar) imageries based on multiscale Stochastic Models is proposed, considering non-gaussian statistical property of SAR image data and Markov property of neighboring scales. Since EM(expectation maximum) algorithm can not get the parameter estimation of non-gauss distribution, MAR(Multiscale Autoregressive) model is used for extracting image Feature data which obeys gauss distribution. HMT(Hidden Markov Tree) model can be used to model image consisting of multi-scale feature data, which can be approximated by mixed gauss distribution and its parameters can be straightly trained by EM algorithm. Then we propose a context model to fuse feature information of multiscale. Finally, we obtain a new unsupervised segmentation approach for SAR imageries. Simulations on SAR imagery indicate that the new approach improves segmentation accuracy in some degree.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new unsupervised segmentation algorithm of SAR(Synthetic aperture radar) imageries based on multiscale Stochastic Models is proposed, considering non-gaussian statistical property of SAR image data and Markov property of neighboring scales. Since EM(expectation maximum) algorithm can not get the parameter estimation of non-gauss distribution, MAR(Multiscale Autoregressive) model is used for extracting image Feature data which obeys gauss distribution. HMT(Hidden Markov Tree) model can be used to model image consisting of multi-scale feature data, which can be approximated by mixed gauss distribution and its parameters can be straightly trained by EM algorithm. Then we propose a context model to fuse feature information of multiscale. Finally, we obtain a new unsupervised segmentation approach for SAR imageries. Simulations on SAR imagery indicate that the new approach improves segmentation accuracy in some degree.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度随机模型的SAR图像无监督分割的应用
考虑合成孔径雷达图像数据的非高斯统计特性和邻近尺度的马尔可夫特性,提出了一种基于多尺度随机模型的合成孔径雷达图像无监督分割算法。由于EM(期望最大值)算法无法得到非高斯分布的参数估计,采用MAR(多尺度自回归)模型提取服从高斯分布的图像特征数据。隐马尔可夫树模型可以对多尺度特征数据组成的图像进行建模,该模型可以用混合高斯分布近似,其参数可以用EM算法直接训练。然后提出了一种融合多尺度特征信息的上下文模型。最后,我们得到了一种新的SAR图像的无监督分割方法。在SAR图像上的仿真结果表明,该方法在一定程度上提高了分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Refined SAR image segmentation algorithm based on K-means clustering Extended PGA processing of high resolution airborne SAR imagery reconstructed via backprojection algorithm Design of Ka-band practical waveguide duplexer Adaptive structured detector and performance assessment in training-limited cases Vivaldi antenna for railway cutting monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1