{"title":"Application of unsupervised segmentation for SAR imageries based on multiscale stochastic models","authors":"Yi-xiao Xiong, Jinming Ding, Wei Wang","doi":"10.1109/RADAR.2016.8059505","DOIUrl":null,"url":null,"abstract":"A new unsupervised segmentation algorithm of SAR(Synthetic aperture radar) imageries based on multiscale Stochastic Models is proposed, considering non-gaussian statistical property of SAR image data and Markov property of neighboring scales. Since EM(expectation maximum) algorithm can not get the parameter estimation of non-gauss distribution, MAR(Multiscale Autoregressive) model is used for extracting image Feature data which obeys gauss distribution. HMT(Hidden Markov Tree) model can be used to model image consisting of multi-scale feature data, which can be approximated by mixed gauss distribution and its parameters can be straightly trained by EM algorithm. Then we propose a context model to fuse feature information of multiscale. Finally, we obtain a new unsupervised segmentation approach for SAR imageries. Simulations on SAR imagery indicate that the new approach improves segmentation accuracy in some degree.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A new unsupervised segmentation algorithm of SAR(Synthetic aperture radar) imageries based on multiscale Stochastic Models is proposed, considering non-gaussian statistical property of SAR image data and Markov property of neighboring scales. Since EM(expectation maximum) algorithm can not get the parameter estimation of non-gauss distribution, MAR(Multiscale Autoregressive) model is used for extracting image Feature data which obeys gauss distribution. HMT(Hidden Markov Tree) model can be used to model image consisting of multi-scale feature data, which can be approximated by mixed gauss distribution and its parameters can be straightly trained by EM algorithm. Then we propose a context model to fuse feature information of multiscale. Finally, we obtain a new unsupervised segmentation approach for SAR imageries. Simulations on SAR imagery indicate that the new approach improves segmentation accuracy in some degree.