{"title":"Object tracking with dynamic feature graph","authors":"Feng Tang, Hai Tao","doi":"10.1109/VSPETS.2005.1570894","DOIUrl":null,"url":null,"abstract":"Two major problems for model-based object tracking are: 1) how to represent an object so that it can effectively be discriminated with background and other objects; 2) how to dynamically update the model to accommodate the object appearance and structure changes. Traditional appearance based representations (like color histogram) fails when the object has rich texture. In this paper, we present a novel feature based object representation attributed relational graph (ARG) for reliable object tracking. The object is modeled with invariant features (SIFT) and their relationship is encoded in the form of an ARG that can effectively distinguish itself from background and other objects. We adopt a competitive and efficient dynamic model to adoptively update the object model by adding new stable features as well as deleting inactive features. A relaxation labeling method is used to match the model graph with the observation to gel the best object position. Experiments show that our method can get reliable track even under dramatic appearance changes, occlusions, etc.","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

Two major problems for model-based object tracking are: 1) how to represent an object so that it can effectively be discriminated with background and other objects; 2) how to dynamically update the model to accommodate the object appearance and structure changes. Traditional appearance based representations (like color histogram) fails when the object has rich texture. In this paper, we present a novel feature based object representation attributed relational graph (ARG) for reliable object tracking. The object is modeled with invariant features (SIFT) and their relationship is encoded in the form of an ARG that can effectively distinguish itself from background and other objects. We adopt a competitive and efficient dynamic model to adoptively update the object model by adding new stable features as well as deleting inactive features. A relaxation labeling method is used to match the model graph with the observation to gel the best object position. Experiments show that our method can get reliable track even under dramatic appearance changes, occlusions, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态特征图的目标跟踪
基于模型的目标跟踪的两个主要问题是:1)如何表示一个目标,使其能够有效地与背景和其他目标区分;2)如何动态更新模型以适应对象外观和结构的变化。当对象具有丰富的纹理时,传统的基于外观的表示(如颜色直方图)就失效了。本文提出了一种新的基于特征的对象表示属性关系图(ARG),用于可靠的目标跟踪。用不变特征(SIFT)对目标进行建模,并将它们之间的关系以ARG的形式进行编码,从而有效地将目标与背景和其他目标区分开来。我们采用一种竞争高效的动态模型,通过增加新的稳定特征和删除不活跃特征来自适应地更新对象模型。采用松弛标记法将模型图与观测值进行匹配,得到最佳目标位置。实验表明,该方法可以在剧烈的外观变化、遮挡等情况下获得可靠的跟踪结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On calibrating a camera network using parabolic trajectories of a bouncing ball Vehicle Class Recognition from Video-Based on 3D Curve Probes A Comparison of Active-Contour Models Based on Blurring and on Marginalization Validation of blind region learning and tracking Object tracking with dynamic feature graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1