In-storage embedded accelerator for sparse pattern processing

S. Jun, H. Nguyen, V. Gadepally, Arvind
{"title":"In-storage embedded accelerator for sparse pattern processing","authors":"S. Jun, H. Nguyen, V. Gadepally, Arvind","doi":"10.1109/HPEC.2016.7761588","DOIUrl":null,"url":null,"abstract":"We present a novel architecture for sparse pattern processing, using flash storage with embedded accelerators. Sparse pattern processing on large data sets is the essence of applications such as document search, natural language processing, bioinformatics, subgraph matching, machine learning, and graph processing. One slice of our prototype accelerator is capable of handling up to 1TB of data, and experiments show that it can outperform C/C++ software solutions on a 16-core system at a fraction of the power and cost; an optimized version of the accelerator can match the performance of a 48-core server.","PeriodicalId":308129,"journal":{"name":"2016 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2016.7761588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a novel architecture for sparse pattern processing, using flash storage with embedded accelerators. Sparse pattern processing on large data sets is the essence of applications such as document search, natural language processing, bioinformatics, subgraph matching, machine learning, and graph processing. One slice of our prototype accelerator is capable of handling up to 1TB of data, and experiments show that it can outperform C/C++ software solutions on a 16-core system at a fraction of the power and cost; an optimized version of the accelerator can match the performance of a 48-core server.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏模式处理的存储嵌入式加速器
我们提出了一种新的稀疏模式处理架构,使用带有嵌入式加速器的闪存存储。大数据集上的稀疏模式处理是文档搜索、自然语言处理、生物信息学、子图匹配、机器学习和图处理等应用的本质。我们的原型加速器的一个切片能够处理高达1TB的数据,实验表明,它可以在16核系统上以一小部分的功率和成本优于C/ c++软件解决方案;加速器的优化版本可以达到48核服务器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Havens: Explicit reliable memory regions for HPC applications In-storage embedded accelerator for sparse pattern processing On-chip memory efficient data layout for 2D FFT on 3D memory integrated FPGA Design space exploration of GPU Accelerated cluster systems for optimal data transfer using PCIe bus Accelerated low-rank updates to tensor decompositions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1