Automated tuning of the nonlinear complementary filter for an Attitude Heading Reference observer

O. de Silva, G. Mann, R. Gosine
{"title":"Automated tuning of the nonlinear complementary filter for an Attitude Heading Reference observer","authors":"O. de Silva, G. Mann, R. Gosine","doi":"10.1109/WORV.2013.6521934","DOIUrl":null,"url":null,"abstract":"In this paper we detail a numerical optimization method for automated tuning of a nonlinear filter used in Attitude Heading Reference Systems (AHRS). First, the Levenberg Marquardt method is used for nonlinear parameter estimation of the observer model. Two approaches are described; Extended Kalman Filter (EKF) based supervised implementation and unsupervised error minimization based implementation. The quaternion formulation is used in the development in order to have a global minimum parametrization in the rotation group. These two methods are then compared using both simulated and experimental data taken from a commercial Inertial Measurement Unit (IMU) used in an autopilot system of an unmanned aerial vehicle. The results reveal that the proposed EKF based supervised implementation is faster and also has a better robustness against different initial conditions.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we detail a numerical optimization method for automated tuning of a nonlinear filter used in Attitude Heading Reference Systems (AHRS). First, the Levenberg Marquardt method is used for nonlinear parameter estimation of the observer model. Two approaches are described; Extended Kalman Filter (EKF) based supervised implementation and unsupervised error minimization based implementation. The quaternion formulation is used in the development in order to have a global minimum parametrization in the rotation group. These two methods are then compared using both simulated and experimental data taken from a commercial Inertial Measurement Unit (IMU) used in an autopilot system of an unmanned aerial vehicle. The results reveal that the proposed EKF based supervised implementation is faster and also has a better robustness against different initial conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
姿态航向参考观测器非线性互补滤波器的自动调谐
本文详细介绍了一种用于姿态航向参考系统(AHRS)非线性滤波器自动调谐的数值优化方法。首先,采用Levenberg Marquardt方法对观测器模型进行非线性参数估计。描述了两种方法;基于扩展卡尔曼滤波(EKF)的监督实现和基于无监督误差最小化的实现。在开发中使用了四元数公式,以便在旋转群中具有全局最小参数化。然后使用商用惯性测量单元(IMU)的模拟和实验数据对这两种方法进行比较,IMU用于无人驾驶飞行器的自动驾驶系统。结果表明,基于EKF的监督实现速度更快,并且对不同初始条件具有更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated tuning of the nonlinear complementary filter for an Attitude Heading Reference observer Sensitivity evaluation of embedded code detection in imperceptible structured light sensing Fast iterative five point relative pose estimation A wireless robotic video laparo-endoscope for minimal invasive surgery Rapid explorative direct inverse kinematics learning of relevant locations for active vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1