Mapper Interactive: A Scalable, Extendable, and Interactive Toolbox for the Visual Exploration of High-Dimensional Data

Youjia Zhou, N. Chalapathi, Archit Rathore, Yaodong Zhao, Bei Wang
{"title":"Mapper Interactive: A Scalable, Extendable, and Interactive Toolbox for the Visual Exploration of High-Dimensional Data","authors":"Youjia Zhou, N. Chalapathi, Archit Rathore, Yaodong Zhao, Bei Wang","doi":"10.1109/PacificVis52677.2021.00021","DOIUrl":null,"url":null,"abstract":"The mapper algorithm is a popular tool from topological data analysis for extracting topological summaries of high-dimensional datasets. In this paper, we present Mapper Interactive, a web-based framework for the interactive analysis and visualization of high-dimensional point cloud data. It implements the mapper algorithm in an interactive, scalable, and easily extendable way, thus supporting practical data analysis. In particular, its command-line API can compute mapper graphs for 1 million points of 256 dimensions in about 3 minutes (4 times faster than the vanilla implementation). Its visual interface allows on-the-fly computation and manipulation of the mapper graph based on user-specified parameters and supports the addition of new analysis modules with a few lines of code. Mapper Interactive makes the mapper algorithm accessible to nonspecialists and accelerates topological analytics workflows.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The mapper algorithm is a popular tool from topological data analysis for extracting topological summaries of high-dimensional datasets. In this paper, we present Mapper Interactive, a web-based framework for the interactive analysis and visualization of high-dimensional point cloud data. It implements the mapper algorithm in an interactive, scalable, and easily extendable way, thus supporting practical data analysis. In particular, its command-line API can compute mapper graphs for 1 million points of 256 dimensions in about 3 minutes (4 times faster than the vanilla implementation). Its visual interface allows on-the-fly computation and manipulation of the mapper graph based on user-specified parameters and supports the addition of new analysis modules with a few lines of code. Mapper Interactive makes the mapper algorithm accessible to nonspecialists and accelerates topological analytics workflows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapper Interactive:用于高维数据可视化探索的可伸缩、可扩展和交互式工具箱
mapper算法是拓扑数据分析领域的一种常用工具,用于提取高维数据集的拓扑摘要。在本文中,我们提出了Mapper Interactive,一个基于web的框架,用于高维点云数据的交互式分析和可视化。它以交互式、可扩展和易于扩展的方式实现了映射器算法,从而支持实际的数据分析。特别是,它的命令行API可以在大约3分钟内计算一百万个256维点的映射图(比普通实现快4倍)。它的可视化界面允许基于用户指定的参数对映射器图形进行实时计算和操作,并支持通过几行代码添加新的分析模块。Mapper Interactive使非专业人员也可以访问Mapper算法,并加速拓扑分析工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles Know-What and Know-Who: Document Searching and Exploration using Topic-Based Two-Mode Networks Louvain-based Multi-level Graph Drawing A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1