Geomorphological significance of shelf-incised valleys as mesophotic habitats

N. Oliveira, A. Lavagnino, Gabriela Aleixo Rocha, R. Moura, A. Bastos
{"title":"Geomorphological significance of shelf-incised valleys as mesophotic habitats","authors":"N. Oliveira, A. Lavagnino, Gabriela Aleixo Rocha, R. Moura, A. Bastos","doi":"10.3389/frsen.2023.1111825","DOIUrl":null,"url":null,"abstract":"Geomorphology provides the core attributes for outlining marine seascapes, once the structural complexity of the seafloor mediates several oceanographic processes and ecosystem services, and is positively associated with biodiversity. Shelf-incised valleys and other prominent meso-scale structures such as reefs and sinkholes have a great potential for the discrimination of benthic habitat groups. Here, we investigate shelf-incised valleys as a mesophotic habitat, by focusing on their geomorphological control in defining distinct habitats in comparison with the flat surrounding area. The study was based on the integration of high-resolution bathymetry data (multibeam echosounder), video imaging, and physical-chemical parameters of the water column. Habitat mapping was conducted using object-based image analysis segmentation and clustering. Principal Component Analysis was used to assess the variables associated with habitat distribution at each morphological region of the valleys. Bathymetric data revealed the presence of 5 shelf-incised valleys and 5 seabed classes were defined as carbonate crusts, Rhodoliths (3 distinct classes) and unconsolidated sediments. A comprehensive habitat map with 17 classes was produced, and 13 are associated with valley´s relief. Extensive rhodolith beds were mapped in the valley flanks/bottom and in the flat areas. Shelf-incised valleys are prominent morphological features that add complexity to the seascape, contrasting with the flat relief that dominates the seascape. The seabed footage obtained in the valleys revealed that their heterogeneous, complex and irregular topography harbors a great diversity of epibionts, such as scleractinian corals, coralline algae, sponges and bryozoans. Most of the variability in the dataset is correlated with salinity, temperature and carbonate sediments, which seem to be the most influential variables over the biological assemblage, together with water depth and seabed slope. Shelf-incised valleys, similarly to submarine canyons, can define a complex mesophotic habitat and sustain distinct biodiversity, and even form mesophotic reefs. These features are the legacy of Quaternary sea-level changes and should be further investigated as important mesophotic habitats.","PeriodicalId":198378,"journal":{"name":"Frontiers in Remote Sensing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsen.2023.1111825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Geomorphology provides the core attributes for outlining marine seascapes, once the structural complexity of the seafloor mediates several oceanographic processes and ecosystem services, and is positively associated with biodiversity. Shelf-incised valleys and other prominent meso-scale structures such as reefs and sinkholes have a great potential for the discrimination of benthic habitat groups. Here, we investigate shelf-incised valleys as a mesophotic habitat, by focusing on their geomorphological control in defining distinct habitats in comparison with the flat surrounding area. The study was based on the integration of high-resolution bathymetry data (multibeam echosounder), video imaging, and physical-chemical parameters of the water column. Habitat mapping was conducted using object-based image analysis segmentation and clustering. Principal Component Analysis was used to assess the variables associated with habitat distribution at each morphological region of the valleys. Bathymetric data revealed the presence of 5 shelf-incised valleys and 5 seabed classes were defined as carbonate crusts, Rhodoliths (3 distinct classes) and unconsolidated sediments. A comprehensive habitat map with 17 classes was produced, and 13 are associated with valley´s relief. Extensive rhodolith beds were mapped in the valley flanks/bottom and in the flat areas. Shelf-incised valleys are prominent morphological features that add complexity to the seascape, contrasting with the flat relief that dominates the seascape. The seabed footage obtained in the valleys revealed that their heterogeneous, complex and irregular topography harbors a great diversity of epibionts, such as scleractinian corals, coralline algae, sponges and bryozoans. Most of the variability in the dataset is correlated with salinity, temperature and carbonate sediments, which seem to be the most influential variables over the biological assemblage, together with water depth and seabed slope. Shelf-incised valleys, similarly to submarine canyons, can define a complex mesophotic habitat and sustain distinct biodiversity, and even form mesophotic reefs. These features are the legacy of Quaternary sea-level changes and should be further investigated as important mesophotic habitats.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
陆架切割山谷作为中磷虾生境的地貌意义
一旦海底结构的复杂性介导了几个海洋学过程和生态系统服务,地貌学为概述海洋景观提供了核心属性,并与生物多样性呈正相关。大陆架切割的山谷和其他突出的中尺度结构,如珊瑚礁和天坑,对底栖生物栖息地群的区分具有很大的潜力。在这里,我们研究了大陆架切割山谷作为一种中厚生境,重点研究了与周围平坦地区相比,它们在定义不同生境方面的地貌控制。该研究基于高分辨率测深数据(多波束回声测深仪)、视频成像和水柱的物理化学参数的集成。采用基于目标的图像分析、分割和聚类方法进行生境制图。采用主成分分析法对各形态区生境分布的相关变量进行了评价。测深数据显示存在5个陆架切割山谷和5个海底类别,定义为碳酸盐地壳,Rhodoliths(3个不同类别)和松散沉积物。绘制了一幅包含17个类别的综合栖息地地图,其中13个类别与山谷地形有关。在山谷侧翼/底部和平坦地区绘制了广泛的铑石层。大陆架切割的山谷是突出的形态特征,增加了海景的复杂性,与主导海景的平坦地形形成鲜明对比。在山谷中获得的海底影像显示,其异质、复杂和不规则的地形孕育了大量的表面生物,如硬核珊瑚、珊瑚藻类、海绵和苔藓虫。数据集中的大部分变异性与盐度、温度和碳酸盐沉积物相关,这些似乎是对生物组合影响最大的变量,此外还有水深和海底坡度。与海底峡谷类似,陆架切割山谷可以定义复杂的中孔生物栖息地,维持独特的生物多样性,甚至形成中孔生物礁。这些特征是第四纪海平面变化的遗产,应作为重要的中藻栖息地进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A near-real-time tropical deforestation monitoring algorithm based on the CuSum change detection method Suitability of different in-water algorithms for eutrophic and absorbing waters applied to Sentinel-2 MSI and Sentinel-3 OLCI data Sea surface barometry with an O2 differential absorption radar: retrieval algorithm development and simulation Assessment of advanced neural networks for the dual estimation of water quality indicators and their uncertainties Selecting HyperNav deployment sites for calibrating and validating PACE ocean color observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1