{"title":"Period Classification in Chinese Historical Texts","authors":"Zuoyu Tian, Sandra Kübler","doi":"10.18653/v1/2021.latechclfl-1.19","DOIUrl":null,"url":null,"abstract":"In this study, we study language change in Chinese Biji by using a classification task: classifying Ancient Chinese texts by time periods. Specifically, we focus on a unique genre in classical Chinese literature: Biji (literally “notebook” or “brush notes”), i.e., collections of anecdotes, quotations, etc., anything authors consider noteworthy, Biji span hundreds of years across many dynasties and conserve informal language in written form. For these reasons, they are regarded as a good resource for investigating language change in Chinese (Fang, 2010). In this paper, we create a new dataset of 108 Biji across four dynasties. Based on the dataset, we first introduce a time period classification task for Chinese. Then we investigate different feature representation methods for classification. The results show that models using contextualized embeddings perform best. An analysis of the top features chosen by the word n-gram model (after bleaching proper nouns) confirms that these features are informative and correspond to observations and assumptions made by historical linguists.","PeriodicalId":441300,"journal":{"name":"Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.latechclfl-1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, we study language change in Chinese Biji by using a classification task: classifying Ancient Chinese texts by time periods. Specifically, we focus on a unique genre in classical Chinese literature: Biji (literally “notebook” or “brush notes”), i.e., collections of anecdotes, quotations, etc., anything authors consider noteworthy, Biji span hundreds of years across many dynasties and conserve informal language in written form. For these reasons, they are regarded as a good resource for investigating language change in Chinese (Fang, 2010). In this paper, we create a new dataset of 108 Biji across four dynasties. Based on the dataset, we first introduce a time period classification task for Chinese. Then we investigate different feature representation methods for classification. The results show that models using contextualized embeddings perform best. An analysis of the top features chosen by the word n-gram model (after bleaching proper nouns) confirms that these features are informative and correspond to observations and assumptions made by historical linguists.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国历史文本的时期分类
在本研究中,我们使用了一个分类任务来研究汉语笔记中的语言变化:按时期对古代汉语文本进行分类。具体来说,我们关注的是中国古典文学中的一种独特类型:笔记(字面意思是“笔记本”或“毛笔笔记”),即轶事、语录等的集合,作者认为值得注意的任何东西,笔记跨越了数百年,跨越了许多朝代,保留了书面形式的非正式语言。由于这些原因,它们被认为是研究汉语语言变化的良好资源(Fang, 2010)。在本文中,我们创建了一个新的数据集,包括四个朝代的108个毕吉。在此基础上,我们首先引入了一个针对中文的时间段分类任务。然后研究了不同的特征表示方法进行分类。结果表明,使用情境化嵌入的模型效果最好。对单词n-gram模型选择的最重要特征(在漂白专有名词之后)的分析证实,这些特征具有信息性,并且与历史语言学家的观察和假设相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FrameNet-like Annotation of Olfactory Information in Texts The Early Modern Dutch Mediascape. Detecting Media Mentions in Chronicles Using Word Embeddings and CRF Period Classification in Chinese Historical Texts A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek The Multilingual Corpus of Survey Questionnaires Query Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1