A Generic and Highly Scalable Framework for the Automation and Execution of Scientific Data Processing and Simulation Workflows

Jianlei Liu, Eric Braun, Clemens Düpmeier, Patrick Kuckertz, D. Ryberg, M. Robinius, D. Stolten, V. Hagenmeyer
{"title":"A Generic and Highly Scalable Framework for the Automation and Execution of Scientific Data Processing and Simulation Workflows","authors":"Jianlei Liu, Eric Braun, Clemens Düpmeier, Patrick Kuckertz, D. Ryberg, M. Robinius, D. Stolten, V. Hagenmeyer","doi":"10.1109/ICSA.2018.00024","DOIUrl":null,"url":null,"abstract":"In order to perform complex data processing and co-simulation workflows for research on data driven energy systems, a generic, modular and highly scalable process operation framework is presented in this article. This framework consistently applies web technologies to build up a microservices architecture. It automates the startup, synchronization, and management of scientific data processing and simulation tools (e.g. Python, Matlab, OpenModelica) as part of larger transdisciplinary, multi-domain data processing and co-simulation workflows. It uses container virtualization on the underlying cluster computing environment to control and manage different simulation nodes.Within the framework’s processing workflow, software executables can be distributed to different nodes on the cluster, easily access data and communicate with other components via communication adapters and a high-performance messaging channel infrastructure. By integrating Apache NiFi, the framework also provides an easy-to-use web user interface to allow users to model, perform and operate workflows for future energy system solutions. As soon as a complex workflow is set up in the process operation framework, researchers can use the workflow without any setup or configuration on their local workstations and without knowing any details of the underlying infrastructure or software environment.","PeriodicalId":142325,"journal":{"name":"2018 IEEE International Conference on Software Architecture (ICSA)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Architecture (ICSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA.2018.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In order to perform complex data processing and co-simulation workflows for research on data driven energy systems, a generic, modular and highly scalable process operation framework is presented in this article. This framework consistently applies web technologies to build up a microservices architecture. It automates the startup, synchronization, and management of scientific data processing and simulation tools (e.g. Python, Matlab, OpenModelica) as part of larger transdisciplinary, multi-domain data processing and co-simulation workflows. It uses container virtualization on the underlying cluster computing environment to control and manage different simulation nodes.Within the framework’s processing workflow, software executables can be distributed to different nodes on the cluster, easily access data and communicate with other components via communication adapters and a high-performance messaging channel infrastructure. By integrating Apache NiFi, the framework also provides an easy-to-use web user interface to allow users to model, perform and operate workflows for future energy system solutions. As soon as a complex workflow is set up in the process operation framework, researchers can use the workflow without any setup or configuration on their local workstations and without knowing any details of the underlying infrastructure or software environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于科学数据处理和仿真工作流自动化和执行的通用和高度可扩展框架
为了在数据驱动能源系统研究中执行复杂的数据处理和协同仿真工作流程,本文提出了一个通用的、模块化的、高度可扩展的过程操作框架。该框架始终应用web技术来构建微服务架构。它将科学数据处理和仿真工具(如Python、Matlab、OpenModelica)的启动、同步和管理自动化,作为更大的跨学科、多领域数据处理和协同仿真工作流程的一部分。它在底层集群计算环境上使用容器虚拟化来控制和管理不同的仿真节点。在框架的处理工作流中,可以将软件可执行文件分发到集群上的不同节点,方便地访问数据,并通过通信适配器和高性能消息传递通道基础设施与其他组件通信。通过集成Apache NiFi,该框架还提供了一个易于使用的web用户界面,允许用户为未来的能源系统解决方案建模、执行和操作工作流。一旦在过程操作框架中建立了复杂的工作流,研究人员就可以使用工作流,而无需在其本地工作站上进行任何设置或配置,也无需了解底层基础设施或软件环境的任何细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Migrating Towards Microservice Architectures: An Industrial Survey An Expert Recommendation System for Design Decision Making: Who Should be Involved in Making a Design Decision? A Generic and Highly Scalable Framework for the Automation and Execution of Scientific Data Processing and Simulation Workflows Infrastructure-as-Code for Data-Intensive Architectures: A Model-Driven Development Approach Predicting the Performance of Privacy-Preserving Data Analytics Using Architecture Modelling and Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1