On part of speech tagger for Indonesian language

R. S. Yuwana, A. R. Yuliani, H. Pardede
{"title":"On part of speech tagger for Indonesian language","authors":"R. S. Yuwana, A. R. Yuliani, H. Pardede","doi":"10.1109/ICITISEE.2017.8285530","DOIUrl":null,"url":null,"abstract":"In this paper we present an evaluation of six popular methods for Part-of-Speech (POS) tagging tasks of Indonesian language. They are Unigram, Hidden Markov Model, TnT, Brills, Naive Bayes, and Maximum Entropy taggers. Indonesian language, while is one of most spoken language in the world has very limited data for POS tagging tasks. Therefore, it is interesting to investigate and evaluate some popular approaches in POS tagging when dealing for such conditions. The results of our experiments show that Maximum Entropy provides the highest accuracy of all methods. It is consistently better even when the size of the training data is varied.","PeriodicalId":130873,"journal":{"name":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITISEE.2017.8285530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we present an evaluation of six popular methods for Part-of-Speech (POS) tagging tasks of Indonesian language. They are Unigram, Hidden Markov Model, TnT, Brills, Naive Bayes, and Maximum Entropy taggers. Indonesian language, while is one of most spoken language in the world has very limited data for POS tagging tasks. Therefore, it is interesting to investigate and evaluate some popular approaches in POS tagging when dealing for such conditions. The results of our experiments show that Maximum Entropy provides the highest accuracy of all methods. It is consistently better even when the size of the training data is varied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印尼语词性标注器的研究
本文对印尼语词性标注的六种常用方法进行了评价。它们是Unigram, Hidden Markov Model, TnT, Brills,朴素贝叶斯和最大熵标记器。印尼语虽然是世界上使用最多的语言之一,但用于词性标注任务的数据非常有限。因此,在处理这种情况时,调查和评估一些流行的词性标注方法是很有趣的。我们的实验结果表明,最大熵提供了所有方法中最高的准确性。即使训练数据的大小不同,它也总是更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deployment of cloud computing for higher education using google apps A triumvirate blended learning method for embedded computational devices used in the Internet of Things: A case study Simple duplicate frame detection of MJPEG codec for video forensic Classification of intrusion detection system (IDS) based on computer network Stabilizing Two-wheeled robot using linear quadratic regulator and states estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1