Increasing the rate of intrusion detection based on a hybrid technique

Khattab M. Ali Alheeti, L. Al-Jobouri, K. Mcdonald-Maier
{"title":"Increasing the rate of intrusion detection based on a hybrid technique","authors":"Khattab M. Ali Alheeti, L. Al-Jobouri, K. Mcdonald-Maier","doi":"10.1109/CEEC.2013.6659468","DOIUrl":null,"url":null,"abstract":"This paper presents techniques to increase intrusion detection rates. Theses techniques are based on specific features that are detected and it's shown that a small number of features (9) can yield improved detection rates compared to higher numbers. These techniques utilize soft computing techniques such a Backpropagation based artificial neural networks and fuzzy sets. These techniques achieve a significant improvement over the state of the art for standard DARPA benchmark data.","PeriodicalId":309053,"journal":{"name":"2013 5th Computer Science and Electronic Engineering Conference (CEEC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th Computer Science and Electronic Engineering Conference (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2013.6659468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents techniques to increase intrusion detection rates. Theses techniques are based on specific features that are detected and it's shown that a small number of features (9) can yield improved detection rates compared to higher numbers. These techniques utilize soft computing techniques such a Backpropagation based artificial neural networks and fuzzy sets. These techniques achieve a significant improvement over the state of the art for standard DARPA benchmark data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高基于混合技术的入侵检测率
本文提出了提高入侵检测率的技术。这些技术是基于被检测到的特定特征,并且已经证明,与大量特征相比,少量特征(9)可以产生更高的检测率。这些技术利用软计算技术,如基于反向传播的人工神经网络和模糊集。这些技术实现了对标准DARPA基准数据的技术状态的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive clustering based segmentation for image classification The throughput benefits of network coding for SR ARQ communication Adaptive CT image segmentation using mathematical morphology Increasing the rate of intrusion detection based on a hybrid technique A mathematical model for a GA-based dynamic excess bandwidth allocation algorithm for hybrid PON and wireless technology integrations for next generation broadband access networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1