Photovoltaic output power chaotic characteristic and trend prediction based on the actual measurement data

Wang Yufei, Sun Lu, Xue Hua
{"title":"Photovoltaic output power chaotic characteristic and trend prediction based on the actual measurement data","authors":"Wang Yufei, Sun Lu, Xue Hua","doi":"10.1109/ICIEA.2016.7603603","DOIUrl":null,"url":null,"abstract":"Based on the nonlinear dynamic modeling of photovoltaic power generation system output time sequences, parsing the kinetic characteristics of the output power of photovoltaic power generation system, the chaos characteristics of the photovoltaic power generation system output power is put forward. According to the phase space reconstruction theory, adding weight first order local prediction method is used for photovoltaic output power chaotic prediction. The actual measurement data of the output power acquired from the photovoltaic power generation system of a printing plant roof is used to verify the prediction method. Results show that the photovoltaic power generation system output power has chaotic characteristics, and it is feasible that the chaos prediction method apply to photovoltaic output power prediction, the method has a high accuracy for photovoltaic power ultra-short term prediction, it provide a new way for photovoltaic output power prediction.","PeriodicalId":283114,"journal":{"name":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2016.7603603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Based on the nonlinear dynamic modeling of photovoltaic power generation system output time sequences, parsing the kinetic characteristics of the output power of photovoltaic power generation system, the chaos characteristics of the photovoltaic power generation system output power is put forward. According to the phase space reconstruction theory, adding weight first order local prediction method is used for photovoltaic output power chaotic prediction. The actual measurement data of the output power acquired from the photovoltaic power generation system of a printing plant roof is used to verify the prediction method. Results show that the photovoltaic power generation system output power has chaotic characteristics, and it is feasible that the chaos prediction method apply to photovoltaic output power prediction, the method has a high accuracy for photovoltaic power ultra-short term prediction, it provide a new way for photovoltaic output power prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于实测数据的光伏输出功率混沌特性及趋势预测
基于光伏发电系统输出时间序列的非线性动态建模,解析光伏发电系统输出功率的动力学特性,提出光伏发电系统输出功率的混沌特性。根据相空间重构理论,采用加权一阶局部预测法对光伏输出功率进行混沌预测。利用某印刷厂屋顶光伏发电系统输出功率的实际测量数据对预测方法进行了验证。结果表明,光伏发电系统输出功率具有混沌特性,混沌预测方法应用于光伏输出功率预测是可行的,该方法对光伏功率超短期预测具有较高的精度,为光伏输出功率预测提供了一种新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The electric power source structure optimization based on capital investment efficiency Modeling, control and implementation of high step-up ratio IDDB converters for fuel cell applications Research of heat transfer characteristic for PMSM with two-way ventilation structure Experimental researches on the novel single-phase induction motor Adaptive similarity fusion strategy in stereo matching algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1