BERTopic Modelling with P53 in Ovarian Cancer

R. O. Oveh, M. Adewunmi, G. Aziken
{"title":"BERTopic Modelling with P53 in Ovarian Cancer","authors":"R. O. Oveh, M. Adewunmi, G. Aziken","doi":"10.1109/ITED56637.2022.10051483","DOIUrl":null,"url":null,"abstract":"Ovarian cancer is the cancerous growth that begins in the ovaries. It has been identified as the most common cause of cancer related death around the world. It is known for its complexity and low survival rate due to late diagnosis and ineffective early detection mechanism. The mutation of p53 tumour suppressor gene is prevalent in High Grade Serious Ovarian Cancer (HGSOC). In this paper BERTopic Topic modelling an unsupervised machine learning technique was used to extract the keywords p53 and ovarian cancer from PubMed database using the Entrez Global Query Cross-Database Search System. The resulting data was then processed using the regex approach and the Natural Language Tool Kit (NLTK). The result showed useful insight in p53 ovarian cancer topic areas.","PeriodicalId":246041,"journal":{"name":"2022 5th Information Technology for Education and Development (ITED)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th Information Technology for Education and Development (ITED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITED56637.2022.10051483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ovarian cancer is the cancerous growth that begins in the ovaries. It has been identified as the most common cause of cancer related death around the world. It is known for its complexity and low survival rate due to late diagnosis and ineffective early detection mechanism. The mutation of p53 tumour suppressor gene is prevalent in High Grade Serious Ovarian Cancer (HGSOC). In this paper BERTopic Topic modelling an unsupervised machine learning technique was used to extract the keywords p53 and ovarian cancer from PubMed database using the Entrez Global Query Cross-Database Search System. The resulting data was then processed using the regex approach and the Natural Language Tool Kit (NLTK). The result showed useful insight in p53 ovarian cancer topic areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P53在卵巢癌中的BERTopic模型
卵巢癌是一种始于卵巢的恶性肿瘤。它已被确定为世界上最常见的癌症相关死亡原因。由于诊断较晚,早期发现机制不完善,其复杂性和生存率较低。p53肿瘤抑制基因突变在高级别严重卵巢癌(HGSOC)中普遍存在。利用Entrez全球查询跨数据库搜索系统,利用BERTopic主题建模和无监督机器学习技术从PubMed数据库中提取关键词p53和卵巢癌。然后使用正则表达式方法和自然语言工具包(NLTK)处理结果数据。结果显示在p53卵巢癌主题领域有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drug Recommender Systems: A Review of State-of-the-Art Algorithms An Improved Password-authentication Model for Access Control in Connected Systems Inset Fed Circular Microstrip Patch Antenna at 2.4 GHz for IWSN Applications Development of Alcohol Detection with Engine Locking and Short Messaging Service Tracking System A Machine Learning Technique for Detection of Diabetes Mellitus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1