Optimization of PV Energy Conversion System Using Reinforcement Learning Algorithm

M. A. Zeddini, Mourad Turki, Mohamed Faouzi Mimoun
{"title":"Optimization of PV Energy Conversion System Using Reinforcement Learning Algorithm","authors":"M. A. Zeddini, Mourad Turki, Mohamed Faouzi Mimoun","doi":"10.1109/STA50679.2020.9329331","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel MPPT algorithm using a reinforcement learning (RL) to track the Global Maximum Power Point (GMPP) for photovoltaic (PV) applications. The RL MPPT algorithm was validated by simulation studies under Matlab-simulink for a 2.5 kW PV conversion system based on 5*4 PV modules, a DC/DC converter and a resistive Load. In order to enhance the searching ability of proposed MPPT algorithm, a load and irradiation variations are introduced on simulations tests. In particular, a changing of partial shading condition (PSC) is undertaken to change the position and the value of the GMPP a lot of time for improving the efficiency of the algorithm.","PeriodicalId":158545,"journal":{"name":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA50679.2020.9329331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a novel MPPT algorithm using a reinforcement learning (RL) to track the Global Maximum Power Point (GMPP) for photovoltaic (PV) applications. The RL MPPT algorithm was validated by simulation studies under Matlab-simulink for a 2.5 kW PV conversion system based on 5*4 PV modules, a DC/DC converter and a resistive Load. In order to enhance the searching ability of proposed MPPT algorithm, a load and irradiation variations are introduced on simulations tests. In particular, a changing of partial shading condition (PSC) is undertaken to change the position and the value of the GMPP a lot of time for improving the efficiency of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习算法的光伏能量转换系统优化
本文提出了一种新的MPPT算法,利用强化学习(RL)来跟踪光伏(PV)应用的全局最大功率点(GMPP)。在Matlab-simulink环境下,对基于5*4光伏模块、DC/DC变换器和阻性负载的2.5 kW光伏转换系统的RL MPPT算法进行了仿真研究。为了提高MPPT算法的搜索能力,在仿真试验中引入了载荷和辐射的变化。其中,为了提高算法的效率,采用了局部遮阳条件(PSC)的改变来多次改变GMPP的位置和值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and Performance Analysis of the Transceiver Duplex Filter using SIMULINK DSP Implementation of a Novel SPWM Algorithm Dedicated to the Delta Inverter Singularity representation and workspace determination of the parrallel robot PAR4 Identification of PWARX Model Based on Outer Bounding Ellipsoid Algorithm Fuzzy T2I Adaptive Backstepping Control for a State-Coupled Two-Tank System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1