Extreme learning machine with multiple kernels

Li-juan Su, Min Yao
{"title":"Extreme learning machine with multiple kernels","authors":"Li-juan Su, Min Yao","doi":"10.1109/ICCA.2013.6565148","DOIUrl":null,"url":null,"abstract":"Recently a novel learning algorithm called extreme learning machine (ELM) was proposed for efficiently training single-hidden layer feedforward neural networks (SLFNs). Compared with other traditional gradient-descent-based learning algorithms, ELM has shown promising results because it chooses weights and biases of hidden nodes randomly and obtains the output weights and biases analytically. In most cases, ELM is fast and presents good generalization, but we find that the stability and generalization performance still can be improved. In this paper, we propose a hybrid model which combines the advantage of ELM and the advantage of Bayesian “sum of kernels” model, named Extreme Learning Machine with Multiple Kernels (MK-ELM). This method optimizes the kernel function using a weighted sum of kernel functions by a prior knowledge. Experimental results show that this approach is able to make neural networks more robust and generates better generalization performance for both regression and classification applications.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6565148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Recently a novel learning algorithm called extreme learning machine (ELM) was proposed for efficiently training single-hidden layer feedforward neural networks (SLFNs). Compared with other traditional gradient-descent-based learning algorithms, ELM has shown promising results because it chooses weights and biases of hidden nodes randomly and obtains the output weights and biases analytically. In most cases, ELM is fast and presents good generalization, but we find that the stability and generalization performance still can be improved. In this paper, we propose a hybrid model which combines the advantage of ELM and the advantage of Bayesian “sum of kernels” model, named Extreme Learning Machine with Multiple Kernels (MK-ELM). This method optimizes the kernel function using a weighted sum of kernel functions by a prior knowledge. Experimental results show that this approach is able to make neural networks more robust and generates better generalization performance for both regression and classification applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多核极限学习机
为了有效地训练单隐层前馈神经网络(SLFNs),最近提出了一种新的学习算法——极限学习机(ELM)。与其他传统的基于梯度下降的学习算法相比,ELM算法随机选择隐藏节点的权值和偏置,并解析地获得输出的权值和偏置,显示出良好的效果。在大多数情况下,ELM是快速和良好的泛化,但我们发现稳定性和泛化性能仍然可以提高。本文提出了一种结合ELM和贝叶斯“核和”模型优点的混合模型,称为多核极限学习机(MK-ELM)。该方法利用先验知识对核函数进行加权和来优化核函数。实验结果表明,该方法能够增强神经网络的鲁棒性,并在回归和分类应用中产生更好的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cooperative task planning for multiple autonomous UAVs with graph representation and genetic algorithm Real-time measure and control system of biped walking robot based on sensor Simultaneously scheduling production plan and maintenance policy for a single machine with failure uncertainty Fuzzy grey sliding mode control for maximum power point tracking of photovoltaic systems A data-driven approach for sensor fault diagnosis in gearbox of wind energy conversion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1