Data Quality Estimation Framework for Faster Tax Code Classification

R. Kondadadi, Allen Williams, Nicolas Nicolov
{"title":"Data Quality Estimation Framework for Faster Tax Code Classification","authors":"R. Kondadadi, Allen Williams, Nicolas Nicolov","doi":"10.18653/v1/2022.ecnlp-1.4","DOIUrl":null,"url":null,"abstract":"This paper describes a novel framework to estimate the data quality of a collection of product descriptions to identify required relevant information for accurate product listing classification for tax-code assignment. Our Data Quality Estimation (DQE) framework consists of a Question Answering (QA) based attribute value extraction model to identify missing attributes and a classification model to identify bad quality records. We show that our framework can accurately predict the quality of product descriptions. In addition to identifying low-quality product listings, our framework can also generate a detailed report at a category level showing missing product information resulting in a better customer experience.","PeriodicalId":384006,"journal":{"name":"Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.ecnlp-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a novel framework to estimate the data quality of a collection of product descriptions to identify required relevant information for accurate product listing classification for tax-code assignment. Our Data Quality Estimation (DQE) framework consists of a Question Answering (QA) based attribute value extraction model to identify missing attributes and a classification model to identify bad quality records. We show that our framework can accurately predict the quality of product descriptions. In addition to identifying low-quality product listings, our framework can also generate a detailed report at a category level showing missing product information resulting in a better customer experience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速税号分类的数据质量估计框架
本文描述了一种新的框架来估计产品描述集合的数据质量,以确定准确的产品清单分类所需的相关信息。我们的数据质量评估(DQE)框架由一个基于问答(QA)的属性值提取模型(用于识别缺失属性)和一个分类模型(用于识别不良质量记录)组成。我们证明了我们的框架可以准确地预测产品描述的质量。除了识别低质量的产品列表外,我们的框架还可以在类别级别生成详细的报告,显示缺失的产品信息,从而带来更好的客户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Seq2seq Language Generation for Multi-level Product Issue Identification Data Quality Estimation Framework for Faster Tax Code Classification semiPQA: A Study on Product Question Answering over Semi-structured Data Clause Topic Classification in German and English Standard Form Contracts Can Pretrained Language Models Generate Persuasive, Faithful, and Informative Ad Text for Product Descriptions?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1