{"title":"Exploring PGAS Communication for Heterogeneous Clusters with FPGAs","authors":"Varun Sharma, P. Chow","doi":"10.1145/3431920.3439469","DOIUrl":null,"url":null,"abstract":"This work presents a heterogeneous communication library for generic clusters of processors and FPGAs. This library, Shoal, supports the Partitioned Global Address Space (PGAS) memory model for applications. PGAS is a shared memory model for clusters that creates a distinction between local and remote memory access. Through Shoal and its common application programming interface for hardware and software, applications can be more freely migrated to the optimal platform and deployed onto dynamic cluster topologies. The library is tested using a thorough suite of microbenchmarks to establish latency and throughput performance. We also show an implementation of the Jacobi iterative method that demonstrates the ease with which applications can be moved between platforms to yield faster run times.","PeriodicalId":386071,"journal":{"name":"The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3431920.3439469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work presents a heterogeneous communication library for generic clusters of processors and FPGAs. This library, Shoal, supports the Partitioned Global Address Space (PGAS) memory model for applications. PGAS is a shared memory model for clusters that creates a distinction between local and remote memory access. Through Shoal and its common application programming interface for hardware and software, applications can be more freely migrated to the optimal platform and deployed onto dynamic cluster topologies. The library is tested using a thorough suite of microbenchmarks to establish latency and throughput performance. We also show an implementation of the Jacobi iterative method that demonstrates the ease with which applications can be moved between platforms to yield faster run times.