Neurofuzzy inference system for diagnosis of malaria

Aayush Rastogi, N. Gupta, P. Tyagi
{"title":"Neurofuzzy inference system for diagnosis of malaria","authors":"Aayush Rastogi, N. Gupta, P. Tyagi","doi":"10.1109/CIPECH.2014.7019042","DOIUrl":null,"url":null,"abstract":"In this paper, a structure of adaptive system is proposed with the help of Neurofuzzy System (NFS) for diagnosis of Malaria. Investigation of malaria using Neurofuzzy system has been used for decision making ability based on predefined rules and learning by the backpropagation algorithm. Mapping Network in backpropagation algorithm is applied to minimize the errors in the output. Investigation of malaria by the proposed system is illustrated and good performance is achieved with maximum instant error of 0.06144.","PeriodicalId":170027,"journal":{"name":"2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIPECH.2014.7019042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a structure of adaptive system is proposed with the help of Neurofuzzy System (NFS) for diagnosis of Malaria. Investigation of malaria using Neurofuzzy system has been used for decision making ability based on predefined rules and learning by the backpropagation algorithm. Mapping Network in backpropagation algorithm is applied to minimize the errors in the output. Investigation of malaria by the proposed system is illustrated and good performance is achieved with maximum instant error of 0.06144.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
疟疾诊断的神经模糊推理系统
本文提出了一种基于神经模糊系统(NFS)的疟疾诊断自适应系统结构。利用神经模糊系统进行疟疾研究,具有基于预定义规则和反向传播算法学习的决策能力。采用反向传播算法中的映射网络,使输出误差最小。应用该系统对疟疾进行了研究,取得了良好的效果,最大瞬时误差为0.06144。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid CMOS-memristor 4T-NVSRAM cell for low power applications VLSI architecture and implementation of statistical multiplexer A comparative analysis of ant colony optimization for its applications into software testing Neurofuzzy inference system for diagnosis of Leukemia Computation & analysis of aluminum and steel structures by using ABAQUS software for engineering applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1