Impact of 1.2kV SiC-MOSFET EV traction inverter on urban driving

Hyeokjin Kim, Hua Chen, Jianglin Zhu, D. Maksimović, R. Erickson
{"title":"Impact of 1.2kV SiC-MOSFET EV traction inverter on urban driving","authors":"Hyeokjin Kim, Hua Chen, Jianglin Zhu, D. Maksimović, R. Erickson","doi":"10.1109/WIPDA.2016.7799913","DOIUrl":null,"url":null,"abstract":"Replacement of an electric vehicle conventional Si-IGBT traction inverter with a SiC-MOSFET inverter can achieve reductions in urban driving cycle average loss by a factor of four, reduction in peak loss by a factor of three, and reduction in semiconductor die area by a factor of two. An 80 kW EV powertrain based on the Nissan LEAF is modeled in MATLAB/Simulink, and EPA standard driving cycles such as UDDS, HWFET, and US06 are simulated. Scenarios of a 600V Si-IGBT inverter based on the Nissan LEAF, a 1200V Si-IGBT inverter based on the Toyota Prius, and a 1200V SiC-MOSFET inverter are designed using currently available devices. A comprehensive loss model including switching and conduction loss is developed and the total loss of the SiC-MOSFET traction inverter over EPA standard driving cycles shows a reduction in urban driving cycle average loss by a factor of four and peak loss by a factor of three, as well as semiconductor die area by a factor of two, relative to the Si-IGBT traction inverter.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7799913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Replacement of an electric vehicle conventional Si-IGBT traction inverter with a SiC-MOSFET inverter can achieve reductions in urban driving cycle average loss by a factor of four, reduction in peak loss by a factor of three, and reduction in semiconductor die area by a factor of two. An 80 kW EV powertrain based on the Nissan LEAF is modeled in MATLAB/Simulink, and EPA standard driving cycles such as UDDS, HWFET, and US06 are simulated. Scenarios of a 600V Si-IGBT inverter based on the Nissan LEAF, a 1200V Si-IGBT inverter based on the Toyota Prius, and a 1200V SiC-MOSFET inverter are designed using currently available devices. A comprehensive loss model including switching and conduction loss is developed and the total loss of the SiC-MOSFET traction inverter over EPA standard driving cycles shows a reduction in urban driving cycle average loss by a factor of four and peak loss by a factor of three, as well as semiconductor die area by a factor of two, relative to the Si-IGBT traction inverter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1.2kV SiC-MOSFET电动汽车牵引逆变器对城市行驶的影响
用SiC-MOSFET逆变器取代传统的电动汽车Si-IGBT牵引逆变器可以实现城市驾驶周期平均损耗降低四倍,峰值损耗降低三倍,半导体芯片面积减少两倍。采用MATLAB/Simulink对日产LEAF 80kw电动汽车动力总成进行建模,并对UDDS、HWFET、US06等EPA标准工况进行仿真。利用现有器件设计了基于日产LEAF的600V Si-IGBT逆变器、基于丰田普锐斯的1200V Si-IGBT逆变器和基于1200V SiC-MOSFET逆变器的场景。开发了包括开关和传导损耗在内的综合损耗模型,并且在EPA标准驱动周期内,SiC-MOSFET牵引逆变器的总损耗显示,相对于Si-IGBT牵引逆变器,城市驱动周期平均损耗减少了四倍,峰值损耗减少了三倍,半导体芯片面积减少了两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UIS failure mechanism of SiC power MOSFETs Integrated Bi-directional SiC MOSFET power switches for efficient, power dense and reliable matrix converter assembly SiC and GaN power transistors switching energy evaluation in hard and soft switching conditions Impact of SiC technology in a three-port active bridge converter for energy storage integrated solid state transformer applications Impulse transformer based secondary-side self-powered gate-driver for wide-range PWM operation of SiC power MOSFETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1