Efficient Likelihood Ratio Confidence Intervals using Constrained Optimization

Gregor Reich, K. Judd
{"title":"Efficient Likelihood Ratio Confidence Intervals using Constrained Optimization","authors":"Gregor Reich, K. Judd","doi":"10.2139/ssrn.3455484","DOIUrl":null,"url":null,"abstract":"Using constrained optimization, we develop a simple, efficient approach (applicable in both unconstrained and constrained maximum-likelihood estimation problems) to computing profile-likelihood confidence intervals. In contrast to Wald-type or score-based inference, the likelihood ratio confidence intervals use all the information encoded in the likelihood function concerning the parameters, which leads to improved statistical properties. In addition, the method does no suffer from the computational burdens inherent in the bootstrap. In an application to Rust's (1987) bus-engine replacement problem, our approach does better than either the Wald or the bootstrap methods, delivering very accurate estimates of the confidence intervals quickly and efficiently. An extensive Monte Carlo study reveals that in small samples, only likelihood ratio confidence intervals yield reasonable coverage properties, while at the same time discriminating implausible values.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3455484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Using constrained optimization, we develop a simple, efficient approach (applicable in both unconstrained and constrained maximum-likelihood estimation problems) to computing profile-likelihood confidence intervals. In contrast to Wald-type or score-based inference, the likelihood ratio confidence intervals use all the information encoded in the likelihood function concerning the parameters, which leads to improved statistical properties. In addition, the method does no suffer from the computational burdens inherent in the bootstrap. In an application to Rust's (1987) bus-engine replacement problem, our approach does better than either the Wald or the bootstrap methods, delivering very accurate estimates of the confidence intervals quickly and efficiently. An extensive Monte Carlo study reveals that in small samples, only likelihood ratio confidence intervals yield reasonable coverage properties, while at the same time discriminating implausible values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用约束优化的有效似然比置信区间
使用约束优化,我们开发了一种简单,有效的方法(适用于无约束和有约束的最大似然估计问题)来计算轮廓似然置信区间。与wald型或基于分数的推理相比,似然比置信区间使用了有关参数的似然函数中编码的所有信息,从而改善了统计特性。此外,该方法没有自举法固有的计算负担。在Rust(1987)的总线引擎替换问题的应用程序中,我们的方法比Wald或bootstrap方法做得更好,能够快速有效地提供非常准确的置信区间估计。一项广泛的蒙特卡罗研究表明,在小样本中,只有似然比置信区间产生合理的覆盖属性,同时区分不可信的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameters Estimation of Photovoltaic Models Using a Novel Hybrid Seagull Optimization Algorithm Input Indivisibility and the Measurement Error Quadratically optimal equilibrium points of weakly potential bi-matrix games Mathematical Background of the Theory of Cycle of Money An Example for 'Weak Monotone Comparative Statics'
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1