S. Scherr, B. Gottel, S. Ayhan, Akanksha Bhutani, M. Pauli, W. Winkler, J. Scheytt, T. Zwick
{"title":"Miniaturized 122 GHz ISM band FMCW radar with micrometer accuracy","authors":"S. Scherr, B. Gottel, S. Ayhan, Akanksha Bhutani, M. Pauli, W. Winkler, J. Scheytt, T. Zwick","doi":"10.1109/EURAD.2015.7346291","DOIUrl":null,"url":null,"abstract":"In this paper, a miniaturized 122 GHz ISM band FMCW radar is used to achieve micrometer accuracy. The radar consists of a SiGe single chip radar sensor and LCP off-chip antennas. The antennas are integrated in a QFN package. To increase the gain of the radar, an additional lens is used. A combined frequency and phase evaluation algorithm provides micrometer accuracy. The influence of the lens phase center on the beat frequency phase and hence, the overall accuracy is shown. Furthermore, accuracy limitations of the radar system over larger measurement distances are investigated. Accuracies of 200 μm and 2 μm are achieved over a distance of 1.9 m and 5 mm, respectively.","PeriodicalId":376019,"journal":{"name":"2015 European Radar Conference (EuRAD)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Radar Conference (EuRAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURAD.2015.7346291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
In this paper, a miniaturized 122 GHz ISM band FMCW radar is used to achieve micrometer accuracy. The radar consists of a SiGe single chip radar sensor and LCP off-chip antennas. The antennas are integrated in a QFN package. To increase the gain of the radar, an additional lens is used. A combined frequency and phase evaluation algorithm provides micrometer accuracy. The influence of the lens phase center on the beat frequency phase and hence, the overall accuracy is shown. Furthermore, accuracy limitations of the radar system over larger measurement distances are investigated. Accuracies of 200 μm and 2 μm are achieved over a distance of 1.9 m and 5 mm, respectively.