Hierarchical clustering pseudo-relevance feedback for social image search result diversification

B. Boteanu, Ionut Mironica, B. Ionescu
{"title":"Hierarchical clustering pseudo-relevance feedback for social image search result diversification","authors":"B. Boteanu, Ionut Mironica, B. Ionescu","doi":"10.1109/CBMI.2015.7153613","DOIUrl":null,"url":null,"abstract":"This article addresses the issue of social image search result diversification. We propose a novel perspective for the diversification problem via Relevance Feedback (RF). Traditional RF introduces the user in the processing loop by harvesting feedback about the relevance of the search results. This information is used for recomputing a better representation of the data needed. The novelty of our work is in exploiting this concept in a completely automated manner via pseudo-relevance, while pushing in priority the diversification of the results, rather than relevance. User feedback is simulated automatically by selecting positive and negative examples with regard to relevance, from the initial query results. Unsupervised hierarchical clustering is used to re-group images according to their content. Diversification is finally achieved with a re-ranking approach. Experimental validation on Flickr data shows the advantages of this approach.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This article addresses the issue of social image search result diversification. We propose a novel perspective for the diversification problem via Relevance Feedback (RF). Traditional RF introduces the user in the processing loop by harvesting feedback about the relevance of the search results. This information is used for recomputing a better representation of the data needed. The novelty of our work is in exploiting this concept in a completely automated manner via pseudo-relevance, while pushing in priority the diversification of the results, rather than relevance. User feedback is simulated automatically by selecting positive and negative examples with regard to relevance, from the initial query results. Unsupervised hierarchical clustering is used to re-group images according to their content. Diversification is finally achieved with a re-ranking approach. Experimental validation on Flickr data shows the advantages of this approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向社交图像搜索结果多样化的分层聚类伪相关反馈
本文讨论了社交图像搜索结果多样化的问题。我们提出了一种新的视角,通过相关反馈(RF)来研究多元化问题。传统RF通过收集有关搜索结果相关性的反馈,将用户引入处理循环。该信息用于重新计算所需数据的更好表示。我们工作的新颖之处在于通过伪相关性以完全自动化的方式利用这一概念,同时优先推动结果的多样化,而不是相关性。通过从初始查询结果中选择与相关性相关的正面和负面示例,自动模拟用户反馈。根据图像的内容,采用无监督分层聚类对图像进行重新分组。通过重新排序的方法,最终实现了多元化。对Flickr数据的实验验证表明了这种方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of dissimilarity measures for 3D object retrieval with application to multi-feature retrieval A factorized model for multiple SVM and multi-label classification for large scale multimedia indexing On the use of statistical semantics for metadata-based social image retrieval Automatic detection of repetitive actions in a video Hierarchical clustering pseudo-relevance feedback for social image search result diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1