Limei Che, Jie Liang, Xiaoru Yuan, Jianping Shen, Jinquan Xu, Yong Li
{"title":"Laplacian-based dynamic graph visualization","authors":"Limei Che, Jie Liang, Xiaoru Yuan, Jianping Shen, Jinquan Xu, Yong Li","doi":"10.1109/PACIFICVIS.2015.7156358","DOIUrl":null,"url":null,"abstract":"Visualizing dynamic graphs are challenging due to the difficulty to preserving a coherent mental map of the changing graphs. In this paper, we propose a novel layout algorithm which is capable of maintaining the overall structure of a sequence graphs. Through Laplacian constrained distance embedding, our method works online and maintains the aesthetic of individual graphs and the shape similarity between adjacent graphs in the sequence. By preserving the shape of the same graph components across different time steps, our method can effectively help users track and gain insights into the graph changes. Two datasets are tested to demonstrate the effectiveness of our algorithm.","PeriodicalId":177381,"journal":{"name":"2015 IEEE Pacific Visualization Symposium (PacificVis)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2015.7156358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Visualizing dynamic graphs are challenging due to the difficulty to preserving a coherent mental map of the changing graphs. In this paper, we propose a novel layout algorithm which is capable of maintaining the overall structure of a sequence graphs. Through Laplacian constrained distance embedding, our method works online and maintains the aesthetic of individual graphs and the shape similarity between adjacent graphs in the sequence. By preserving the shape of the same graph components across different time steps, our method can effectively help users track and gain insights into the graph changes. Two datasets are tested to demonstrate the effectiveness of our algorithm.