GoldPhish: Using Images for Content-Based Phishing Analysis

M. Dunlop, S. Groat, David Shelly
{"title":"GoldPhish: Using Images for Content-Based Phishing Analysis","authors":"M. Dunlop, S. Groat, David Shelly","doi":"10.1109/ICIMP.2010.24","DOIUrl":null,"url":null,"abstract":"Phishing attacks continue to plague users as attackers develop new ways to fool users into submitting personal information to fraudulent sites. Many schemes claim to protect against phishing sites. Unfortunately, most do not protect against zero-day phishing sites. Those schemes that do allege to provide zero-day protection, often incorrectly label both phishing and legitimate sites. We propose a scheme that protects against zero-day phishing attacks with high accuracy. Our approach captures an image of a page, uses optical character recognition to convert the image to text, then leverages the Google PageRank algorithm to help render a decision on the validity of the site. After testing our tool on 100 legitimate sites and 100 phishing sites, we accurately reported 100% of legitimate sites and 98% of phishing sites.","PeriodicalId":314947,"journal":{"name":"2010 Fifth International Conference on Internet Monitoring and Protection","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth International Conference on Internet Monitoring and Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMP.2010.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156

Abstract

Phishing attacks continue to plague users as attackers develop new ways to fool users into submitting personal information to fraudulent sites. Many schemes claim to protect against phishing sites. Unfortunately, most do not protect against zero-day phishing sites. Those schemes that do allege to provide zero-day protection, often incorrectly label both phishing and legitimate sites. We propose a scheme that protects against zero-day phishing attacks with high accuracy. Our approach captures an image of a page, uses optical character recognition to convert the image to text, then leverages the Google PageRank algorithm to help render a decision on the validity of the site. After testing our tool on 100 legitimate sites and 100 phishing sites, we accurately reported 100% of legitimate sites and 98% of phishing sites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GoldPhish:使用图像进行基于内容的网络钓鱼分析
网络钓鱼攻击继续困扰着用户,因为攻击者开发了新的方法来欺骗用户向欺诈网站提交个人信息。许多方案声称可以防止网络钓鱼网站。不幸的是,大多数都没有针对零日钓鱼网站提供保护。那些声称提供零日保护的方案,往往错误地将网络钓鱼和合法网站都贴上了标签。我们提出了一种防止零日网络钓鱼攻击的方案,具有很高的准确性。我们的方法捕获页面的图像,使用光学字符识别将图像转换为文本,然后利用谷歌PageRank算法来帮助对站点的有效性做出决定。在对100个合法网站和100个网络钓鱼网站进行测试后,我们准确地报告了100%的合法网站和98%的网络钓鱼网站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A-MAKE: An Efficient, Anonymous and Accountable Authentication Framework for WMNs FEMRA: Fuzzy Expert Model for Risk Assessment GoldPhish: Using Images for Content-Based Phishing Analysis Comparing Anomaly Detection Methods in Computer Networks Authentication of Biometric Features Using Texture Coding for ID Cards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1