Jing-Cao Li, Cheng-Chao Huang, Ming Xu, Zhi-bin Li
{"title":"Positive Root Isolation for Poly-Powers","authors":"Jing-Cao Li, Cheng-Chao Huang, Ming Xu, Zhi-bin Li","doi":"10.1145/2930889.2930909","DOIUrl":null,"url":null,"abstract":"We consider a class of univariate real functions---poly-powers---that extend integer exponents to real algebraic exponents for polynomials. Our purpose is to isolate positive roots of such a function into disjoint intervals, which can be further easily computed up to any desired precision. To this end, we first classify poly-powers into simple and non-simple ones, depending on the number of linearly independent exponents. For the former, we present a complete isolation method based on Gelfond--Schneider theorem. For the latter, the completeness depends on Schanuel's conjecture. Finally experiential results demonstrate the effectivity of the proposed method.","PeriodicalId":169557,"journal":{"name":"Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930889.2930909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We consider a class of univariate real functions---poly-powers---that extend integer exponents to real algebraic exponents for polynomials. Our purpose is to isolate positive roots of such a function into disjoint intervals, which can be further easily computed up to any desired precision. To this end, we first classify poly-powers into simple and non-simple ones, depending on the number of linearly independent exponents. For the former, we present a complete isolation method based on Gelfond--Schneider theorem. For the latter, the completeness depends on Schanuel's conjecture. Finally experiential results demonstrate the effectivity of the proposed method.