Modelling and Simulation of ElasticSearch using CloudSim

Malika Bendechache, Sergej Svorobej, Patricia Takako Endo, Manuel Noya Mario, M. Eduardo Ares, James Byrne, Theo Lynn
{"title":"Modelling and Simulation of ElasticSearch using CloudSim","authors":"Malika Bendechache, Sergej Svorobej, Patricia Takako Endo, Manuel Noya Mario, M. Eduardo Ares, James Byrne, Theo Lynn","doi":"10.1109/DS-RT47707.2019.8958653","DOIUrl":null,"url":null,"abstract":"Simulation can be a powerful technique for evaluating the performance of large-scale cloud computing services in a relatively low cost, low risk and time-sensitive manner. Large-scale data indexing, distribution and management is complex to analyse in a timely manner. In this paper, we extend the CloudSim cloud simulation framework to model and simulate a distributed search engine architecture and its workload characteristics. To test the simulation framework, we develop a model based on a real-world ElasticSearch deployment on Linknovate.com. An experimental evaluation of the framework, comparing simulated and actual query response time, precision and resource utilisation, suggests that the proposed framework is capable of predicting performance at different scales in a precise, accurate and efficient manner. The results can assist ElasticSearch users to manage their scalability and infrastructure requirements.","PeriodicalId":377914,"journal":{"name":"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT47707.2019.8958653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Simulation can be a powerful technique for evaluating the performance of large-scale cloud computing services in a relatively low cost, low risk and time-sensitive manner. Large-scale data indexing, distribution and management is complex to analyse in a timely manner. In this paper, we extend the CloudSim cloud simulation framework to model and simulate a distributed search engine architecture and its workload characteristics. To test the simulation framework, we develop a model based on a real-world ElasticSearch deployment on Linknovate.com. An experimental evaluation of the framework, comparing simulated and actual query response time, precision and resource utilisation, suggests that the proposed framework is capable of predicting performance at different scales in a precise, accurate and efficient manner. The results can assist ElasticSearch users to manage their scalability and infrastructure requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CloudSim的ElasticSearch建模与仿真
模拟可以以相对低成本、低风险和时间敏感的方式评估大规模云计算服务的性能,是一种强大的技术。大规模的数据索引、分发和管理是复杂的,难以及时分析。在本文中,我们扩展了CloudSim云模拟框架来建模和模拟分布式搜索引擎架构及其工作负载特征。为了测试仿真框架,我们基于Linknovate.com上的真实ElasticSearch部署开发了一个模型。对该框架进行了实验评估,比较了模拟和实际的查询响应时间、精度和资源利用率,表明所提出的框架能够以精确、准确和有效的方式预测不同尺度的性能。结果可以帮助ElasticSearch用户管理他们的可伸缩性和基础设施需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How can Machine Learning Support the Practice of Modeling and Simulation? —A Review and Directions for Future Research Performance Gains in V2X Experiments Using Distributed Simulation in the Veins Framework Formal Modelling and Verification of Real-Time Self-Adaptive Systems [DS-RT 2019 Title Page] Modelling and Simulation of ElasticSearch using CloudSim
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1