YARAMON: A Memory-based Detection Framework for Ransomware Families

May Medhat, Menna Essa, Hend Faisal, Samir G. Sayed
{"title":"YARAMON: A Memory-based Detection Framework for Ransomware Families","authors":"May Medhat, Menna Essa, Hend Faisal, Samir G. Sayed","doi":"10.23919/ICITST51030.2020.9351319","DOIUrl":null,"url":null,"abstract":"Ransomware attacks have evolved to become more sophisticated, persistent and irreversible. In 2019, many high profile ransomware developers extorted high-value entities for money by encrypting their data and deleting any backup files. Once a system is infected with a crypto-ransomware attack, it will be tough to recover the victim's data unless a backup is available or the malware author shares the decryption key with the victim. Moreover, ransomware developers nowadays adopt new tactics and techniques to spread and evade detection. One of those techniques is packing in order to enhance their defensive mechanisms to avoid detection. This paper suggests a hybrid approach to detect packed ransomware samples based on scanning process memory dumps and dropped executable files using enhanced YARA rules framework. Through describing common ransomware artifacts using Y ARA rules, upon testing, the detection rate reached 97.9% of dumped files.","PeriodicalId":346678,"journal":{"name":"2020 15th International Conference for Internet Technology and Secured Transactions (ICITST)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference for Internet Technology and Secured Transactions (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICITST51030.2020.9351319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ransomware attacks have evolved to become more sophisticated, persistent and irreversible. In 2019, many high profile ransomware developers extorted high-value entities for money by encrypting their data and deleting any backup files. Once a system is infected with a crypto-ransomware attack, it will be tough to recover the victim's data unless a backup is available or the malware author shares the decryption key with the victim. Moreover, ransomware developers nowadays adopt new tactics and techniques to spread and evade detection. One of those techniques is packing in order to enhance their defensive mechanisms to avoid detection. This paper suggests a hybrid approach to detect packed ransomware samples based on scanning process memory dumps and dropped executable files using enhanced YARA rules framework. Through describing common ransomware artifacts using Y ARA rules, upon testing, the detection rate reached 97.9% of dumped files.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内存的勒索软件家族检测框架
勒索软件攻击已经变得越来越复杂、持久和不可逆转。2019年,许多知名勒索软件开发人员通过加密数据和删除任何备份文件来勒索高价值实体。一旦系统被加密勒索软件攻击感染,除非有备份或恶意软件作者与受害者共享解密密钥,否则很难恢复受害者的数据。此外,勒索软件开发者现在采用新的策略和技术来传播和逃避检测。其中一种技术是打包,以增强它们的防御机制,以避免被发现。本文提出了一种基于扫描进程内存转储和使用增强的YARA规则框架丢弃可执行文件的混合方法来检测打包的勒索软件样本。通过使用yara规则描述常见的勒索软件构件,经测试,对转储文件的检测率达到97.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Shoulder-Surfing Resistant Colour Image-based Authentication Method Using Human Vision Perception with Spatial Frequency YARAMON: A Memory-based Detection Framework for Ransomware Families Session 2: Information Security Measuring Psychosocial and Behavioural Factors Improves Attack Potential Estimates Session 6: Information Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1