Deterministic Transform Based Weight Matrices for Neural Networks

Pol Grau Jurado, Xinyue Liang, S. Chatterjee
{"title":"Deterministic Transform Based Weight Matrices for Neural Networks","authors":"Pol Grau Jurado, Xinyue Liang, S. Chatterjee","doi":"10.1109/icassp43922.2022.9747256","DOIUrl":null,"url":null,"abstract":"We propose to use deterministic transforms as weight matrices for several feedforward neural networks. The use of deterministic transforms helps to reduce the computational complexity in two ways: (1) matrix-vector product complexity in forward pass, helping real time complexity, and (2) fully avoiding backpropagation in the training stage. For each layer of a feedforward network, we pro-pose two unsupervised methods to choose the most appropriate deterministic transform from a set of transforms (a bag of well-known transforms). Experimental results show that the use of deterministic transforms is as good as traditional random matrices in the sense of providing similar classification performance.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose to use deterministic transforms as weight matrices for several feedforward neural networks. The use of deterministic transforms helps to reduce the computational complexity in two ways: (1) matrix-vector product complexity in forward pass, helping real time complexity, and (2) fully avoiding backpropagation in the training stage. For each layer of a feedforward network, we pro-pose two unsupervised methods to choose the most appropriate deterministic transform from a set of transforms (a bag of well-known transforms). Experimental results show that the use of deterministic transforms is as good as traditional random matrices in the sense of providing similar classification performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于确定性变换的神经网络权重矩阵
我们提出将确定性变换作为几个前馈神经网络的权矩阵。确定性变换的使用有助于在两个方面降低计算复杂度:(1)前向传递的矩阵向量积复杂度,有助于实时复杂度,(2)完全避免训练阶段的反向传播。对于前馈网络的每一层,我们提出了两种无监督的方法来从一组变换(一袋众所周知的变换)中选择最合适的确定性变换。实验结果表明,在提供相似分类性能的意义上,确定性变换的使用与传统随机矩阵一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1