Generalized Gaussian Distribution Based Distortion Model for the H.266/VVC Video Coder

Hongkui Wang, Junhui Liang, Li Yu, Y. Gu, Haibing Yin
{"title":"Generalized Gaussian Distribution Based Distortion Model for the H.266/VVC Video Coder","authors":"Hongkui Wang, Junhui Liang, Li Yu, Y. Gu, Haibing Yin","doi":"10.1109/VCIP56404.2022.10008905","DOIUrl":null,"url":null,"abstract":"In versatile video coding (VVC), superior coding performance is achieved with incorporating many advanced coding tools. In this paper, a frame-level coding distortion model is proposed for VVC video coders for the first time. In comparison with the transform coefficient distribution (TCD) of High Effective Video Coding (HEVC), the TCD of VVC has a sharper peak. According to this observation, the TCDs of I, B and P frames are modeled by the probability density function (PDF) of generalized Gaussian distribution (GGD) with three fixed shape parameters. The GGD-based distortion model is then derived with a sliding window-based strategy, i.e., the frame-level coding distortion is formulated as the function of the distribution parameter of frame-level TCD and the quantization step. The experimental results show that the proposed model achieves accurate results of distortion estimation for VVC coders.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In versatile video coding (VVC), superior coding performance is achieved with incorporating many advanced coding tools. In this paper, a frame-level coding distortion model is proposed for VVC video coders for the first time. In comparison with the transform coefficient distribution (TCD) of High Effective Video Coding (HEVC), the TCD of VVC has a sharper peak. According to this observation, the TCDs of I, B and P frames are modeled by the probability density function (PDF) of generalized Gaussian distribution (GGD) with three fixed shape parameters. The GGD-based distortion model is then derived with a sliding window-based strategy, i.e., the frame-level coding distortion is formulated as the function of the distribution parameter of frame-level TCD and the quantization step. The experimental results show that the proposed model achieves accurate results of distortion estimation for VVC coders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义高斯分布的H.266/VVC视频编码器失真模型
在多功能视频编码(VVC)中,集成了许多先进的编码工具,实现了优越的编码性能。本文首次提出了一种用于VVC视频编码器的帧级编码失真模型。与高效视频编码(HEVC)的变换系数分布(TCD)相比,VVC的变换系数分布峰值更明显。在此基础上,采用具有三个固定形状参数的广义高斯分布(GGD)的概率密度函数(PDF)对I、B和P帧的tcd进行建模。然后采用滑动窗口的策略推导了基于ggd的编码失真模型,即将帧级编码失真表示为帧级TCD分布参数与量化步长的函数。实验结果表明,该模型能较准确地估计VVC编码器的失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CdCLR: Clip-Driven Contrastive Learning for Skeleton-Based Action Recognition Spectral Analysis of Aerial Light Field for Optimization Sampling and Rendering of Unmanned Aerial Vehicle Near-lossless Point Cloud Geometry Compression Based on Adaptive Residual Compensation Efficient Interpolation Filters for Chroma Motion Compensation in Video Coding Rate Controllable Learned Image Compression Based on RFL Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1