GRAPHENE AS A QUANTUM PLAYGROUND

G. Benedek
{"title":"GRAPHENE AS A QUANTUM PLAYGROUND","authors":"G. Benedek","doi":"10.4081/INCONTRI.2018.379","DOIUrl":null,"url":null,"abstract":"The modern triathlon “heat-electricity-mechanics” has an indisputable champion, graphene, as a recordman, among all materials in normal conditions, in all three specialties: thermal conductivity, electrical mobility and mechanical strength. On the other hand graphene, being perfectly planar, is the simplest of all possible sp2 pure carbon structures. The graphene family includes curved forms like fullerenes, having gaussian curvature G >0, nanotubes, with G=0 like graphene, and schwarzites with G <0 and vanishing mean curvature. The conjugation of carbon-carbon sp2 bonds makes several global electronic and vibrational properties of graphenes to primarily depend upon the structure topology. Global properties which can be estimated on topological grounds are the growth process, the isomer hierarchy, the vibrational spectrum, the elastic constants, the porosity as a function of the deposition energy, etc. The dynamics of free electrons in graphene is well described by the Dirac quantum-relativistic equation, and some of its consequences like the Zitterbewegung and Klein’s paradox have been proved in graphene. Thus graphene allows for the simulation and validation of fundamental theories in fields hardy accessible to experiments like high-energy physics and cosmology. With some surprising prediction! It is a fact that since the late XIX century topology has become a reference paradigm in many branches of fundamental physics, from Hermann Weyl’s topological theory of electricity and cosmological wormholes, to string theory and present topological field theories in high-energy physics.","PeriodicalId":119535,"journal":{"name":"Istituto Lombardo - Accademia di Scienze e Lettere - Incontri di Studio","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Istituto Lombardo - Accademia di Scienze e Lettere - Incontri di Studio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/INCONTRI.2018.379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The modern triathlon “heat-electricity-mechanics” has an indisputable champion, graphene, as a recordman, among all materials in normal conditions, in all three specialties: thermal conductivity, electrical mobility and mechanical strength. On the other hand graphene, being perfectly planar, is the simplest of all possible sp2 pure carbon structures. The graphene family includes curved forms like fullerenes, having gaussian curvature G >0, nanotubes, with G=0 like graphene, and schwarzites with G <0 and vanishing mean curvature. The conjugation of carbon-carbon sp2 bonds makes several global electronic and vibrational properties of graphenes to primarily depend upon the structure topology. Global properties which can be estimated on topological grounds are the growth process, the isomer hierarchy, the vibrational spectrum, the elastic constants, the porosity as a function of the deposition energy, etc. The dynamics of free electrons in graphene is well described by the Dirac quantum-relativistic equation, and some of its consequences like the Zitterbewegung and Klein’s paradox have been proved in graphene. Thus graphene allows for the simulation and validation of fundamental theories in fields hardy accessible to experiments like high-energy physics and cosmology. With some surprising prediction! It is a fact that since the late XIX century topology has become a reference paradigm in many branches of fundamental physics, from Hermann Weyl’s topological theory of electricity and cosmological wormholes, to string theory and present topological field theories in high-energy physics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨烯作为量子游乐场
现代铁人三项“热电力学”有一个无可争议的冠军,石墨烯,作为记录者,在所有材料在正常条件下,在所有三个方面:导热性,电迁移率和机械强度。另一方面,石墨烯是完美的平面结构,是所有可能的sp2纯碳结构中最简单的。石墨烯家族包括弯曲形式,如富勒烯,具有高斯曲率G >0,纳米管,具有G=0,如石墨烯,以及G <0和平均曲率消失的schwarzites。碳-碳sp2键的共轭使得石墨烯的一些整体电子和振动性能主要取决于结构拓扑。在拓扑学基础上可以估计的整体性质包括生长过程、同分异构体层次、振动谱、弹性常数、孔隙率作为沉积能量的函数等。狄拉克量子相对论方程很好地描述了石墨烯中自由电子的动力学,它的一些结果,如齐特比空和克莱因悖论,已经在石墨烯中得到了证明。因此,石墨烯可以模拟和验证高能物理学和宇宙学等难以进行实验的领域的基本理论。有一些令人惊讶的预测!事实上,自19世纪晚期以来,拓扑学已成为基础物理学许多分支的参考范式,从赫尔曼·魏尔的电力拓扑理论和宇宙虫洞,到弦理论和现在的高能物理拓扑场论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GLI OBIETTIVI DI SVILUPPO SOSTENIBILE DELLE NAZIONI UNITE 2015-2030 SVILUPPO SOSTENIBILE: GLI OBIETTIVI DELLE NAZIONI UNITE 2015-2030 GLI OBIETTIVI DI SVILUPPO SOSTENIBILE AI TEMPI DELLA PANDEMIA OBIETTIVO 10a. RIDURRE LE DISUGUAGLIANZE ALL’INTERNO E FRA LE NAZIONI GREEN ECONOMY: LA MIGLIORE RISPOSTA ALLA CRISI, UNA SFIDA PER IL FUTURO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1