{"title":"Data-based reachability analysis for movement prediction of pedestrians and motion planning","authors":"Michael Hartmann, A. Ferrara, D. Watzenig","doi":"10.1109/ICVES.2018.8519517","DOIUrl":null,"url":null,"abstract":"It is a challenge to find safe trajectories for automated vehicles. Especially in urban environments with pedestrians there are many different situations. The prediction of future movements with 100% certainty is impossible, if the intention of the pedestrian is unknown. In this paper, reachability analysis is used based on historical movement data. A state of the art motion planning approach with Mixed-Integer Linear optimization (MILP) is used for the trajectory planning of the vehicle. This approach can also be used for cooperative vehicle systems, with historical movement data in a fixed urban environment (e.g. intersection). The advantage of this approach is that prior knowledge can be incorporated in the reachability analysis, and the computional load is scalable.","PeriodicalId":151322,"journal":{"name":"International Conference on Vehicular Electronics and Safety","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2018.8519517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
It is a challenge to find safe trajectories for automated vehicles. Especially in urban environments with pedestrians there are many different situations. The prediction of future movements with 100% certainty is impossible, if the intention of the pedestrian is unknown. In this paper, reachability analysis is used based on historical movement data. A state of the art motion planning approach with Mixed-Integer Linear optimization (MILP) is used for the trajectory planning of the vehicle. This approach can also be used for cooperative vehicle systems, with historical movement data in a fixed urban environment (e.g. intersection). The advantage of this approach is that prior knowledge can be incorporated in the reachability analysis, and the computional load is scalable.