{"title":"A Simple Microstrip Bandstop Filter Using Cross-Coupling Stubs","authors":"L. Chiu, Q. Xue","doi":"10.1155/2012/473030","DOIUrl":null,"url":null,"abstract":"This paper presents an alterative implementation of a shunt open-circuited stub for multilayer microwave circuit. With making use of the proposed implementation, a simple and compact bandstop filter with a district bandstop characteristics and a first spurious at the third harmonic is proposed. The proposed filter exhibits about 12.5% fractional bandwidth of −10 dB signal rejection at the center frequency of 2.04 GHz and flat group delay at the pass bands. Besides, by cascading a number of the proposed bandstop filters designed at the different frequencies, multiband bandstop filters can be easily realized. A dual- (tri-) band design at the center frequencies of 2 GHz and 3 GHz (and 4 GHz) is designed, realized, and measured. The proposed bandstop filter well suits the nowadays multilayer and compact radio frequency integrated circuit design.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/473030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
This paper presents an alterative implementation of a shunt open-circuited stub for multilayer microwave circuit. With making use of the proposed implementation, a simple and compact bandstop filter with a district bandstop characteristics and a first spurious at the third harmonic is proposed. The proposed filter exhibits about 12.5% fractional bandwidth of −10 dB signal rejection at the center frequency of 2.04 GHz and flat group delay at the pass bands. Besides, by cascading a number of the proposed bandstop filters designed at the different frequencies, multiband bandstop filters can be easily realized. A dual- (tri-) band design at the center frequencies of 2 GHz and 3 GHz (and 4 GHz) is designed, realized, and measured. The proposed bandstop filter well suits the nowadays multilayer and compact radio frequency integrated circuit design.