{"title":"Advanced magnetic tape technology for linear tape systems: Barium ferrite technology beyond the limitation of metal particulate media","authors":"O. Shimizu, T. Harasawa, H. Noguchi","doi":"10.1109/MSST.2014.6855556","DOIUrl":null,"url":null,"abstract":"We surveyed the history of using metal particulate media in linear tape systems to enhance cartridge capacity, discussed the metal particulate media limitations, and introduced advanced barium-ferrite-particulate-media-based magnetic tape technology, focusing on the use of magnetic particles, surface profile design, and particle orientation control. The increase in cartridge capacity has been accelerated by combining barium ferrite particles with ultrathin layer coating technology and by controlling the barium ferrite particle orientation and surface asperities, which reduce the surface frictional force without increasing the head-to-media spacing.","PeriodicalId":188071,"journal":{"name":"2014 30th Symposium on Mass Storage Systems and Technologies (MSST)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 30th Symposium on Mass Storage Systems and Technologies (MSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSST.2014.6855556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We surveyed the history of using metal particulate media in linear tape systems to enhance cartridge capacity, discussed the metal particulate media limitations, and introduced advanced barium-ferrite-particulate-media-based magnetic tape technology, focusing on the use of magnetic particles, surface profile design, and particle orientation control. The increase in cartridge capacity has been accelerated by combining barium ferrite particles with ultrathin layer coating technology and by controlling the barium ferrite particle orientation and surface asperities, which reduce the surface frictional force without increasing the head-to-media spacing.