Covariance matrix compact differential evolution for embedded intelligence

Y. Jewajinda
{"title":"Covariance matrix compact differential evolution for embedded intelligence","authors":"Y. Jewajinda","doi":"10.1109/TENCONSPRING.2016.7519431","DOIUrl":null,"url":null,"abstract":"This paper presents a compact evolutionary algorithm called the covariance matrix compact differential evolution (CMcDE). CMcDE is a real-parameter optimization evolutionary algorithm that adopt crossover in eigenvector space and representing population of search solutions as Gaussian probability distribution. The proposed algorithm has been tested using a standard test set of numerical problems. The experimental results show that the proposed CMcDE algorithm outperforms other algorithms in the test sets.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a compact evolutionary algorithm called the covariance matrix compact differential evolution (CMcDE). CMcDE is a real-parameter optimization evolutionary algorithm that adopt crossover in eigenvector space and representing population of search solutions as Gaussian probability distribution. The proposed algorithm has been tested using a standard test set of numerical problems. The experimental results show that the proposed CMcDE algorithm outperforms other algorithms in the test sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入式智能的协方差矩阵紧凑差分进化
本文提出了一种称为协方差矩阵紧凑差分进化(CMcDE)的紧凑进化算法。CMcDE是一种实参数优化进化算法,它采用特征向量空间交叉,将搜索解的总体表示为高斯概率分布。所提出的算法已经用一个标准的数值问题测试集进行了测试。实验结果表明,本文提出的CMcDE算法在测试集上优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interaction techniques using head gaze for virtual reality Tree-based protocol for ad hoc networks constructed with data transmission modems Formal reliability analysis of protective systems in smart grids Comparative analysis of PCA and KPCA on paddy growth stages classification Short term load forecasting of Eid Al Fitr holiday by using interval Type-2 Fuzzy Inference System (Case study: Electrical system of Java Bali in Indonesia)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1